Virtual Disk APl Programming Guide

VMware Virtual Disk Development Kit 1.1

6 vmware

Virtual Disk APl Programming Guide

Virtual Disk APl Programming Guide
Item: EN-000056-03

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

© 2008-2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual
property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.

VMware, the VMware “boxes” logo and design, Virtual SMP, and VMotion are registered trademarks or trademarks of
VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks
of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com

Contents

About This Book 7

1 Introduction to the Virtual Disk API 9
Virtual Disk Management 9
What is Managed Disk? 9
Virtual Disk Development Kit 10
Virtual Disk Management Utilities 10
Disk Mount Utility 10
Virtual Disk Manager Utility 10
Virtual Disk API 10
VMware vSphere API to Read and Write VMDK 11
Virtual Disk Internal Format 11
Solutions Enabled by the Virtual Disk API 11
Virtual Disk Library Functions 12

2 Installing the Virtual Disk Development Kit 13
Packaging and Components 13
Supported Platforms 13
Programming Environments 13
Visual Studio on Windows 13
C++and C on Linux Systems 13
Installing the Virtual Disk Development Kit 14
Target System Connectivity 14
VMware Products 14
VMDK Access and Credentials 14

3 Virtual Disk API Functions 15
Virtual Disk and Data Structures 15

VMDK File Location 15

Disk Types 15
Persistence Disk Modes 16
VMDK File Naming 16
Grain Directories and Grain Tables 16
Internationalization and Localization 17

Adapter Types 17

Data Structures in Virtual Disk API 17

Library Functions 18

Start Up 18
Initialize the Library 18
Connect to a Workstation or Server 18
VMX Specification 18

Disk Operations 19
Create a New Hosted Disk 19
Open a Local or Remote Disk 19
Read Sectors From a Disk 19
Write Sectors To a Disk 19

VMware, Inc.

Virtual Disk APl Programming Guide

Close a Local or Remote Disk 19

Get Information About a Disk 19

Free Memory from Get Information 19
Error Handling 19

Return Error Description Text 19

Free Error Description Text 19
Metadata Handling 20

Read Metadata Key from Disk 20

Get Metadata Table from Disk 20

Write Metadata Table to Disk 20
Cloning a Virtual Disk 20

Compute Space Needed for Clone 20

Clone a Disk by Copying Data 20
Disk Chaining and Redo Logs 20

Create Child from Parent Disk 21

Attach Child to Parent Disk 21
Administrative Disk Operations 22

Rename an Existing Disk 22

Grow an Existing Local Disk 22

Defragment an Existing Disk 22

Shrink an Existing Local Disk 23

Unlink Extents to Remove Disk 23
Shut Down 23

Disconnect from Server 23

Clean Up and Exit 23
Capabilities of Library Calls 23

Support for Hosted Disk 23

Support for Managed Disk 23

4 Virtual Disk API Sample Code 25
Compiling the Sample Program 25
Visual C++ on Windows 25

SLN and VCPROJ Files 25
C++on Linux Systems 25
Makefile 26
Library Files Required 26
Usage Message 26
Walk-Through of Sample Program 26
Include Files 26
Definitions and Structures 26
Dynamic Loading 27
Wrapper Classes 27
Command Functions 27
Dolnfo() 27
DoCreate() 28
DoRedo() 28
Write by DoFill() 28
DoReadMetadata() 28
DoWriteMetadata() 28
DoDumpMetadata() 28
DoDump() 29
DoTestMultiThread() 29
DoClone() 29

4 VMware, Inc.

Contents

5 Practical Programming Tasks 31

Scan VMDK for Virus Signatures 31
Creating Virtual Disks 32

Creating Local Disk 32

Creating Remote Disk 33

Special Consideration for ESX/ESXi Hosts 33
Working with Virtual Disk Data 33

Reading and Writing Local Disk 33

Reading and Writing Remote Disk 34

Deleting a Disk (Unlink) 34

Effects of Deleting a Virtual Disk 34
Renaming a Disk 34
Effects of Renaming a Virtual Disk 34

Working with Disk Metadata 34
Managing Child Disks 34

Creating Redo Logs 34

Virtual Disk in Snapshots 35

Windows 2000 Read-Only File System 35
Interfacing With the VIX API 35

Virus Scan all Hosted Disk 36
Interfacing With VMware vSphere 36

Virus Scan All Managed Disk 36

A Flexible Transport for Virtual Disk 37
Virtual Disk Transport Methods 37
File 37
SAN 37
HotAdd 38
LAN (NBD) 39
Licensing 39
APIs to Select Transport Methods 39
List Available Transport Methods 39
Connect to VMware vSphere 40
Get Selected Transport Method 40
Clean Up After Disconnect 40
Updating Applications for Flexible Transport 40
Developing Backup Applications 41
Backup and Recovery Example 41

B Virtual Disk Mount API 43
The VixMntapi Library 43
Header File 43
Types and Structures 43
Operating System Information 43
Disk Volume Information 44
Function Calls 44
VixMntapi_Init() 44
VixMntapi_Exit() 44
VixMntapi_OpenDiskSet() 45
VixMntapi_CloseDiskSet() 45
VixMntapi_GetVolumeHandles() 45
VixMntapi_FreeVolumeHandles() 45
VixMntapi_GetOsInfo() 46
VixMntapi_FreeOsInfo() 46

VMware, Inc. 5

Virtual Disk APl Programming Guide

VixMntapi_MountVolume() 46
VixMntapi_DismountVolume() 46
VixMntapi_GetVolumelnfo() 46
VixMntapi_FreeVolumelnfo() 47

C Virtual Disk API Errors 49

Finding Error Code Documentation 49
Association With VIX API Errors 49

D Open Virtual Machine Format 51
OVEF Tool 51
OVF Library 51

Glossary 53

Index 55

VMware, Inc.

About This Book

The Virtual Disk API Programming Guide introduces the Virtual Disk Development Kit and describes how to
develop software using the VMware® virtual disk library, which provides a set of system-call style interfaces
for managing virtual disks.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History

This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this guide.

Table 1. Revision History

Revision Description

20090203 Fourth version for release 1.1 beta2 of the Virtual Disk Development Kit for storage partners.

20080731 Third version for release 1.1 beta of the Virtual Disk Development Kit for storage partners.

20080411 Second version for release 1.0 of the Virtual Disk Development Kit.

20080131 First version of the Virtual Disk Development Kit for partner beta release.

Intended Audience

This guide is intended for developers who are creating applications that manage virtual storage. It assumes
knowledge of C and C++ programming.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current versions
of other VMware books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and
register your products, go to http://communities.vmware.com/community/developer.

VMware, Inc. 7

mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs/sdk_pubs.html
http://www.vmware.com/support/pubs
http://communities.vmware.com/community/developer

Virtual Disk APl Programming Guide

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials
designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live
online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment. To access information about
education classes, certification programs, and consulting services, go to http://www.vmware.com/services.

VMware, Inc.

http://www.vmware.com/support/services
http://www.vmware.com/services/

Introduction to the Virtual Disk API

This chapter introduces VMware virtual disk management and the Virtual Disk Development Kit.

Virtual Disk Management

The Virtual Disk API, or VixDiskLib, is a set of function calls to manipulate virtual disk files in VMDK format
(virtual machine disk). Function call semantics are patterned after C system calls for file I/O. This API enables
partners and software vendors to manage VMDK directly from their applications.

These library functions can manipulate virtual disk on a VMware Workstation or similar product (hosted disk)
or virtual disk contained within a vStorage VMFS volume on an ESX/ESXi server (managed disk). Hosted disk
is an VMware term meaning a disk managed by the Workstation host for a guest operating system.

What is Managed Disk?

VMDK format dates back to the early days of VMware Workstation. Virtual machine disk files represent the
storage volumes of a virtual machine, and are named with .vmdk suffix. On a VMware Workstation host, file
systems of each guest OS are kept in VMDK files on the host’s physical disk drive.

With the virtual machine file system (VMFES) on ESX/ESXi hosts, VMDK files represent the disk volumes of
virtual machines. This is called managed disk. Managed disk is the same thing as VMFS_FLAT virtual disk,
presented in “Disk Types” on page 15. Functions in the Virtual Disk API support vStorage VMFS, with some
exceptions as noted for managed disk.

Table 1-1 compares the arrangement of managed disk (in this case VMDK on a SAN-hosted VMFS file system)
and hosted disk (VMDK files on physical disk).

Figure 1-1. Managed Disk and Hosted Disk

Workstation

cluster

VMFS1 (LUN1)

VMware, Inc. Beta Dl’aft °

Virtual Disk APl Programming Guide

VMFS disk can reside on a SAN (storage area network) attached to ESX/ESXi hosts by Fibre Channel or iSCSI.
It can also reside on network attached storage, and on directly attached disk. In all cases, the ESX/ESXi host
manages physical disk. The Virtual Disk API has no facility to address a storage partition directly. For storage
planning, see the whitepaper VMuware Virtual Machine File System: Technical Overview and Best Practices in the
Resources section of the VMware Web site. Follow the configuration advice of your storage vendor.

Virtual Disk Development Kit

10

The Virtual Disk Development Kit includes the following components:
® Virtual Disk API library functions
B VMware disk utilities: disk mount and virtual disk manager

B Documentation for the above components

Virtual Disk Management Utilities

The Virtual Disk Development Kit includes two command-line utilities for managing virtual disk: disk mount
and virtual disk manager. The virtual disk manager is included with Workstation 6.0.x and Server products.
Disk mount is available in the Virtual Disk Development Kit and in upcoming products.

Disk Mount Utility

VMware disk mount (vmware-mount) is a utility for Windows and Linux hosts. If a virtual disk is not in use,
the utility mounts it as an independent disk volume, so it can be examined outside its original virtual machine.
You can also mount specific volumes of a virtual disk if the virtual disk is partitioned.

Disk mount is useful because the Virtual Disk API contains no function for making a mounted partition
available to other processes. Opening a VMDK is like mounting, but for the calling process only.

See the VMware DiskMount User’s Guide, which is available on the Web and in the kit.

Virtual Disk Manager Utility

VMware virtual disk manager (vmware-vdiskmanager) is a command-line utility for Windows and Linux
hosts. It allows you to create, convert, expand, defragment, shrink, and rename virtual disk files. It does not
have a facility to create redo logs or snapshots.

See the VMware Virtual Disk Manager User’s Guide, which is available on the Web and in the kit.

Virtual Disk API

VMware provides graphical tools and command-line utilities to help administrators manage virtual disk.
Customers have asked for programmatic interfaces also. This is a standalone wrapper library that helps you
develop solutions that integrate into a wide range of VMware products. The Virtual Disk API partly duplicates
functionality of the virtual disk management utilities and has additional capabilities:

B [t permits random read/write access to data anywhere in a VMDK file.

B [t creates and manages redo logs (parent-child disk chaining, or delta links).
B]t can read and write disk metadata.

®m [tis able delete VMDK files programmatically.

® Error explanations are available.

B Many operations are easier to automate with an API than with utilities.

For Windows, the virtual disk kernel-mode driver is 32-bit or 64-bit depending on the underlying system. The
user-mode libraries are 32-bit because Windows On Windows 64 can run 32-bit programs without alteration.
For Linux, both 32-bit and 64-bit user-mode libraries are provided.

Beta Dr aft VMware, Inc.

Chapter 1 Introduction to the Virtual Disk API

VMware vSphere API to Read and Write VMDK

Version 2.5 of the VMware vSphere API contains some experimental methods to manage VMDK files. See the
managed object type VirtualDiskManager, which contains about a dozen methods similar to those in the
Virtual Disk API documented here.

If you are interested, navigate to VMware SDKs on the Web and click VMware vSphere API Reference Guide
for the API 2.5 version. Find VirtualDiskManager under All Types.
Virtual Disk Internal Format

A document detailing the VMware virtual disk format is available on request. Navigate to VMware Interfaces
Web page, click the Request link, and provide your name, organization, and email address. A link to the online
PDF document should arrive shortly in your email inbox.

http://www.vmware.com/interfaces/vmdk.html

This Virtual Disk Format 1.0 document provides useful information about the VMDK format. It uses the term
“delta link” for what this manual calls “redo log” or “child” disk.

Solutions Enabled by the Virtual Disk API

When integrated into applications, the Virtual Disk API allows you to manipulate virtual disk images and
provide support for VMDK format.

Some tasks can be accomplished either by the virtual disk management utility or by the API:

® Create a new set of new virtual disks and prepare to provision applications.

® Create disk templates for fresh system install, or patch updates, by the IT department.

B Back up a particular volume, or all volumes, associated with a virtual machine.

® Clone the VMDK of a virtual machine and use the cloned copy to perform offline maintenance.

B Manipulate virtual disks to defragment, expand, rename, or shrink the underlying file system image.
® Convert a virtual disk to another format, for example from hosted disk to managed disk.

® Convert a physical disk to a virtual disk (P2V), or a virtual disk to a physical disk (V2P).

B Migrate virtual disks on demand to enable user workforce mobility.

Some solutions can be developed more easily with the Virtual Disk API than with the utilities:

B Scan a VMDK for virus signatures, either live, or first cloning it for off-line scanning. It is not necessary
for the antivirus scanner to have knowledge of the underlying file system.

® Search for data in virtual disks across multiple virtual machines.

B Perform data recovery from unresponsive or corrupt virtual machines.

B Verify the integrity of a VMDK and possibly repair the file system image.

B Optimize VMDK images by combining and compacting them.

® Write defragmentation tools that operate on the native file system, not only on 2GB extents.

B Create VMDK saves by backing up the child, compacting the image, and creating a new child.
B Make a plug-in for a forensic analysis tool such as the X-Ways product.

B Develop a tool like VDK, an open-source kernel mode driver that opens (mounts) a VMDK for read-write
access on a Windows drive letter.

® Extend VMDK for additional OS support, for example mount capability in BSD.

® Create disk support tools to assist hardware vendors.

VMware, Inc. Beta Dr aft v

http://www.vmware.com/interfaces/vmdk.html

Virtual Disk APl Programming Guide

Virtual Disk Library Functions

Table 1-1 alphabetically lists function calls in the Virtual Disk API

12

Table 1-1. Virtual Disk APl Functions

Function

VixDiskLib_Attach

Description

Attaches the child disk chain to the parent disk chain.

VixDiskLib_Cleanup

Remove leftover transports. See “Clean Up After Disconnect” on page 40.

VixDiskLib_Clone

Copies virtual disk to some destination, converting formats as appropriate.

VixDiskLib_Close

Closes an open virtual disk.

VixDiskLib_Connect

Connects to the virtual disk library to obtain services.

VixDiskLib_ConnectEx

Connects to optimum transport. See “Connect to VMware vSphere” on page 40

VixDiskLib_Create

Creates a virtual disk according to specified parameters.

VixDiskLib_CreateChild

Creates a child disk (redo log or delta link) for a hosted virtual disk.

VixDiskLib_Defragment

Defragments a virtual disk.

VixDiskLib_Disconnect

Disconnects from the virtual disk library.

VixDiskLib_Exit

Releases all resources held by the library.

VixDiskLib_FreeErrorText

Frees the message buffer allocated by GetErrorText.

VixDiskLib_FreeInfo

Frees the memory allocated by GetInfo.

VixDiskLib_GetErrorText

Returns the text description of a library error code.

VixDiskLib_GetInfo

Retrieves information about a virtual disk.

VixDiskLib_GetMetadataKeys

Retrieves all keys in the metadata of a virtual disk.

VixDiskLib_GetTransportMode

Gets current transport mode. See “Get Selected Transport Method” on page 40

VixDiskLib_Grow

Grows an existing virtual disk.

VixDiskLib_Init

Initializes the virtual disk library.

VixDiskLib_ListTransportModes

Available transport modes. See “List Available Transport Methods” on page 39.

VixDiskLib_Open

Opens a virtual disk.

VixDiskLib_Read

Reads a range of sectors from an open virtual disk.

VixDiskLib_ReadMetadata

Retrieves the value of a given key from disk metadata.

VixDiskLib_Rename

Renames a virtual disk.

VixDiskLib_Shrink

Reclaims blocks of zeroes from the virtual disk.

VixDiskLib_SpaceNeededForClone

Computes the space required to clone a virtual disk, in bytes.

VixDiskLib_Unlink

Deletes the specified virtual disk.

VixDiskLib_Write

Writes a range of sectors to an open virtual disk.

VixDiskLib_WriteMetadata

Updates virtual disk metadata with the given key/value pair.

Beta Draft

VMware, Inc.

Installing the Virtual Disk
Development Kit

This chapter covers the prerequisites for and installation of the Virtual Disk Development Kit.

Packaging and Components

The Virtual Disk Development Kit is packaged like other VMware software as a compressed archive for Linux,
or an executable installer for Windows. It includes the following components:

® Command-line utilities vmware—mount and vmware-vdiskmanager in the bin directory.
® Header files vixDiskLib.h and vm_basic_types.h in the include directory.
® Function library vixDiskLib.1ib (Windows) or 1ibvixDiskLib.so (Linux) in the 1ib directory.

® HTML reference documentation and sample program in the doc directory.

Supported Platforms
You can install the Virtual Disk Development Kit on the following platforms:
B Windows, both 32-bit x86 and 64-bit x86-64 processors:
m Windows XP (Service Pack 2)
B Windows 2003 (Server Service Pack 2)
B Windows Vista
B Linux, separate packages for 32-bit x86 and 64-bit x86-64 processors:
B Red Hat Enterprise Linux (RHEL) 5
® Ubuntu Desktop 7.10
® SUSE Enterprise Server 10 (Service Pack 1)

B Fedora Core 8

Programming Environments

You can compile the sample program in the following environments:

Visual Studio on Windows

On Windows systems, programmers can use the C compilers in Visual Studio 2003 or Visual Studio 2005.
Visual Studio 2008 might work but compatibility cannot be guaranteed.

C++and C on Linux Systems

On Linux systems, most programmers use the GNU C compiler, version 4 and higher. The sample program
compiles with the C++ compiler g++, but this package also supports the regular C compiler gcc.

VMware, Inc. 13

Virtual Disk APl Programming Guide

Installing the Virtual Disk Development Kit

There is one install package for Windows, one for 32-bit Linux, and one for 64-bit Linux.

To install the package on Windows

1
2
3

On the Download page, choose the binary . exe for Windows and download it to your desktop.
Double-click the new desktop icon.

Click Next, read and accept the license terms, click Next twice, click Install, and Finish.

To Install the package on Linux

1
2

On the Download page, choose the binary tar. gz for either 32-bit Linux or 64-bit Linux.
Unpack the archive:

tar xvzf VMware-vix-disklib.*.tar.gz

This creates the vmware-vix-disklib-distrib subdirectory.

Change to that directory and run the installation script as root:

cd vmware-vix-disklib-distrib
sudo ./vmware-install.pl

Read the license terms and type yes to accept them.
Software components install in /usr unless you specify otherwise.

You might need to edit your LD_LIBRARY_PATH environment to include the library installation path,
/usr/lib/vmware-vix-disklib/1ib32 (or 11b64) for instance. Alternatively, you can add the library
location to the list in /etc/1d.so.conf and run ldconfig as root.

Target System Connectivity

14

This section lists supported products and capabilities.

VMware Products

The Virtual Disk Development Kit supports the following VMware products:

ESX 3.0 and 3.5

ESXi 3.5 with Foundation License (but not with Base or Core license)
VMware vCenter 2.0 and 2.5

ESX 2.5 when connecting through VMware vCenter

Hosted products including Workstation, ACE, Server, and Player

VMDK Access and Credentials

Local operations are supported by local VMDK. Access to an ESX/ESXi host is authenticated by credentials, so
with proper credentials VixDiskLib can reach any VMDK on the ESX/ESXi host. VMware vCenter manages its
own authentication credentials, so VixDiskLib can reach any VMDK permitted by login credentials. On all
these platforms, VixDiskLib supports the following:

Both read-only and read/write modes
Read-only access to disk associated with any snapshot of online virtual machines
Access to VMDK files of offline virtual machines (vCenter restricted to registered virtual machines)

Reading of Microsoft Virtual Hard Disk (VHD) format

VMware, Inc.

Virtual Disk API Functions

This chapter provides an overview of the Virtual Disk API in two major sections:

“Virtual Disk and Data Structures” on page 15

“Library Functions” on page 18

Virtual Disk and Data Structures

VMware offers many options for virtual disk layout, as encapsulated in library data structures.

VMDK File Location

VMDX files are stored in the directory that also holds virtual machine configuration files. On Linux this
directory could be anywhere, so it is usually documented as /path/to/disk. On Windows this directory is
likely to be in C:\My Documents\My Virtual Machines, under its virtual machine name.

VMDXK files store data representing a virtual machine’s hard disk drive. Almost the entire portion of a VMDK
file is the virtual machine’s data, with a small portion allotted to overhead. If a virtual machine is connected
directly to physical disk, the VMDK file stores information about which areas the virtual machine can access.

Disk Types

The following disk types are defined in the virtual disk library:

VIXDISKLIB_DISK_MONOLITHIC_SPARSE — Growable virtual disk contained in a single virtual disk file.
This is the default type for hosted disk, and the only setting in the Chapter 4 sample program.

VIXDISKLIB_DISK_MONOLITHIC_FLAT — Preallocated virtual disk contained in a single virtual disk file.
This takes a while to create and occupies a lot of space, but might perform the best.

VIXDISKLIB_DISK_SPLIT_SPARSE — Growable virtual disk split into 2GB extents (s sequence). These
files start small but can grow to 2GB, which is the maximum on old file systems. This type is complicated
but very manageable because split VMDK can be defragmented.

VIXDISKLIB_DISK_SPLIT_FLAT — Preallocated virtual disk split into 2GB extents (f sequence). These
files start at 2GB, so they take a while to create and occupy a lot of space, but available space is huge.

VIXDISKLIB_DISK_VMFS_FLAT — Preallocated virtual disk compatible with ESX 3.0 and later. This is the
same as “managed disk” introduced in “Virtual Disk Management” on page 9. VMFS_SPARSE exists but
is not supported in this release of the Virtual Disk APL

VIXDISKLIB_DISK_STREAM_OPTIMIZED — Monolithic sparse format and compressed for streaming.
Stream optimized format does not support random reads or writes.

VIXDISKLIB_DISK_UNKNOWN — Disk layout is unknown.

Sparse disks employ the copy-on-write (COW) mechanism, in which virtual disk contains no data in places,
until copied there by a write. This optimization saves storage space.

VMware, Inc.

15

Virtual Disk APl Programming Guide

16

Persistence Disk Modes

In persistent disk mode, changes are immediately and permanently written to the virtual disk, so that they
survive until the next power on.

In nonpersistent mode, changes to the virtual disk are discarded when the virtual machine powers off. The
VMDXK files revert to their original state.

The virtual disk library does not encapsulate this distinction, which is a virtual machine setting.

VMDK File Naming

Table 3-1 further explains the different virtual disk types. The first column corresponds to “Disk Types” on
page 15 but without VIXDISKLIB_DISK prefix. The third column gives the current names of VMDK files on
Workstation hosts. This is an implementation detail; these filenames are currently in use.

NOTE When you open a VMDK file with the virtual disk library, always open the one that points to the others,
not the split or flat sectors. The file to open is most likely the one with the shortest name.

For information about other virtual machine files, see section “Files that Make Up a Virtual Machine” in the
VMuware Workstation User’s Manual. On ESX/ESXi hosts, VMDK files are type VMFS_FLAT or VMFS_SPARSE.
Table 3-1. VMDK Virtual Disk Files

Disk Type in API Virtual Disk Creation on VMware Host Filename on Host

MONOLITHIC_SPARSE In Select A Disk Type, accepting the defaults by not checking any ~ <vmname>.vmdk
box produces one VMDK file that can grow larger if more space is
needed. The <vmname> represents the name of a virtual machine.

MONOLITHIC_FLAT If you select only the Allocate all disk space now check box, space <vnname>-flat.vmdk
is pre-allocated, so the virtual disk cannot grow. The first VMDK
file is small and points to a much larger one, whose filename says
flat without a sequence number.

SPLIT_SPARSE If you select only the Split disk into 2GB files check box, virtual =~ <vmname>-s<###>.vmdk
disk can grow when more space is needed. The first VMDK file is
small and points to a sequence of other VMDK files, all of which
have an s before a sequence number, meaning sparse. The number
of VMDK files depends on the disk size requested. As data grows,
more VMDK files are added in sequence.

SPLIT_FLAT If you select the Allocate all disk space now and Split disk into ~ <vnname>—f<###> . vmdk
2GB files check boxes, space is pre-allocated, so the virtual disk
cannot grow. The first VMDK file is small and points to a sequence
of other files, all of which have an f before the sequence number,
meaning flat. The number of files depends on the requested size.

MONOLITHIC_SPARSE A redo log (or child disk or delta link) is created when a snapshot ~ <diskname>—<###>.vmdk
or SPLIT_SPARSE is taken of a virtual machine, or with the virtual disk library.

Snapshot file numbers are in sequence, without an s or f prefix.

The numbered VMDK file stores changes made to the virtual disk

<diskname> since the original parent disk, or previously

numbered redo log (in other words the previous snapshot).

n/a Snapshot of a virtual machine, which includes pointers to all its <vnname>Snapshot.vmsn
.vmdk virtual disk files.

Grain Directories and Grain Tables

SPARSE type virtual disks use a hierarchical representation to organize sectors. See the Virtual Disk Format 1.0
document referenced in “Virtual Disk Internal Format” on page 11. In this context, grain means granular unit
of data, larger than a sector. The hierarchy includes:

B Grain directory (and redundant grain directory) whose entries point to grain tables.
B Grain tables (and redundant grain tables) whose entries point to grains.

® Each grain is a block of sectors containing virtual disk data. Default size is 128 sectors or 64KB.

VMware, Inc.

Chapter 3 Virtual Disk API Functions

Internationalization and Localization

The path name to a virtual machine and its VMDK can be expressed with any character set supported by the
host file system, but for portability to other locales, ASCII-only path names are recommended. Future releases
are expected to support Unicode UTF-8 path names, based on support in VMware products.

Adapter Types

The library can select the following adapters:

VIXDISKLIB_ADAPTER_IDE — Virtual disk acts like ATA, ATAPI, PATA, SATA, and so on. You might select
this adapter type when it is specifically required by legacy software.

VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC - Virtual SCSI disk with Buslogic adapter. This is the default on
some platforms and is usually recommended over IDE due to higher performance.

VIXDISKLIB_ADAPTER_SCSI_LSILOGIC- Virtual SCSI disk with LSI Logic adapter. Windows Server 2003
and most Linux virtual machines use this type by default. Performance is about the same as Buslogic.

Data Structures in Virtual Disk API

Here are important data structure objects with brief descriptions:

VMware, Inc

VixError — Error code of type uint64.

VixDiskLibConnectParams — Public types designate the virtual machine credentials vmxSpec (possibly
through VMware vCenter), the name of its host or server, and the credential type for authentication. For
more about vmxSpec, see “VMX Specification” on page 18.

typedef char * vmxSpec
typedef char * serverName
typedef VixDiskLibCredType credType

VixDiskLibConnectParams: :VixDiskLibCreds — Credentials for either user ID or session ID:

® VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibUidPasswdCreds — String
data fields represent user name and password for authentication.

® VixDiskLibConnectParams::VixDiskLibCreds::VixDiskLibSessionIdCreds — String
data fields represent the session cookie, user name, and encrypted session key.

VixDiskLibCreateParams — Public types represent the virtual disk (see “Disk Types” on page 15), the
disk adapter (see “Adapter Types” on page 17), VMware version (such as Workstation 5 or ESX/ESXi), and
capacity of the disk sector.

typedef VixDiskLibDiskType diskType
typedef VixDiskLibAdapterType adapterType
typedef uint hwVersion

typedef VixDiskLibSectorType capacity

VixDiskLibDiskInfo —Public types represent the geometry in the BIOS and physical disk, the capacity
of the disk sector, the disk adapter (see “Adapter Types” on page 17), the number of child-disk links (redo
logs), and a string to help locate the parent disk (state before redo logs).

VixDiskLibGeometry biosGeo
VixDiskLibGeometry physGeo
VixDiskLibSectorType capacity
VixDiskLibAdapterType adapterType
int numLinks

char * parentFileNameHint

VixDiskLibGeometry — Public types specify disk geometry. Virtual disk geometry does not necessarily
correspond with physical disk geometry.

typedef uint32 cylinders
typedef uint32 heads
typedef uint32 sectors

17

Virtual Disk APl Programming Guide

Library Functions

18

You can find the VixDiskLib API Reference by using a Web browser to open the doc/index.html file in the
VDDK software distribution. In this section, functions are ordered by how they might be called, rather than
alphabetically as in the API reference.

When the API reference says that a function supports “only hosted disks,” it means virtual disk images hosted
by VMware Workstation or similar products. Virtual disk images stored on vStorage VMFS partitions for
ESX/ESXi hosts are called “managed disk.” When the library accesses virtual disk on vStorage VMFS, all I/O
goes through the ESX/ESXi host, which manages physical disk storage. The Virtual Disk API has no direct
access to SAN storage.

Start Up

The VixDiskLib_Init() and VixDiskLib_Connect () functions must appear in all virtual disk programs.

Initialize the Library

VixDiskLib_Init() initializes the Virtual Disk API The first two arguments, 1 and 0, represent major and
minor API version numbers. The third, fourth, and fifth arguments specify log, warning, and panic handlers.
DLLs and shared objects are located in 1ibDir.

VixError vixError = VixDiskLib_Init(1, 0, &logFunc, &warnFunc, &panicFunc, 1ibDir);
You may call VixDiskLib_Init() only once per process, because of internationalization restrictions.

Always call VixDiskLib_Exit() at the end of your program to de-initialize.

Connect to a Workstation or Server

VixDiskLib_Connect() connects the library to either a local VMware host or a remote server. For hosted disk
on the local system, provide null values for most connection parameters. For managed disk on an ESX/ESXi
host, specify virtual machine name, ESX/ESXi host name, user name, password, and possibly port.

vixError = VixDiskLib_Connect(&cnxParams, &srcConnection)

Always call VixDiskLib_Disconnect() before the end of your program.

VMX Specification

On ESX/ESXi hosts, the Virtual Machine eXecutable (VMX) is the user-space component of VMware vSphere.
On Workstation and hosted products, the . vmx file specifies virtual machine configuration. In the connection
paramaters, vmxSpec can be either a VMX file locator, for example an inventory path to storage, or an
inventory path to the virtual machine’s . vmx file. See “Data Structures in Virtual Disk API” on page 17 for the
connection parameters and vmxSpec definition. These templates show the syntax of both alternatives:

<vmxPathName>?dcPath=<datacenter>&dsName=<dstore>
vmPath=<datacenter>/<path/to/vm>

B <vmxPathName> is the full path name of the VMX file.

B <datacenter> is the inventory path of the datacenter.

B <dstore> is the datastore name.

Here are two vmxSpec examples demonstrating each of the two syntax templates above. Both would be valid
on VMware vCenter Server. The vixDiskLib.h include file documents only the first.

WinXP/WinXP.vmx?dcPath=Datacenter&dsName=Storagel
vmPath=Datacenter/vm/WindowsXP

If you create a folder and move a datacenter into it, be sure to specify dcPath=FolderName/Datacenter.

VMware, Inc.

Chapter 3 Virtual Disk API Functions

Disk Operations

These functions create, open, read, write, query, and close virtual disk.

Create a New Hosted Disk

VixDiskLib_Create() locally creates a new virtual disk, after being connected to the host. In createParams,
you must specify the disk type, adapter, hardware version, and capacity as a number of sectors. This function
supports hosted disk only. To create managed virtual disk, use VixDiskLib_Clone().

vixError =
VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams, NULL, NULL);

Open a Local or Remote Disk
After the library connects to a workstation or server, VixDiskLib_Open() opens a virtual disk.

vixError =
VixDiskLib_Open(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags, &srcHandle);

Read Sectors From a Disk

VixDiskLib_Read() reads a range of sectors from an open virtual disk. You specify the beginning sector and
the number of sectors. Sector size could vary, but in <vixDiskLib.h> it is defined as 512 bytes.

vixError = VixDiskLib_Read(srcHandle, i, j, buf);

Write Sectors To a Disk

VixDiskLib_Write () writes one or more sectors to an open virtual disk. This function expects the fourth
parameter buf to be VIXDISKLIB_SECTOR_SIZE bytes long.

vixError = VixDiskLib_Write(newDisk.Handle(), i, j, buf);

Close a Local or Remote Disk
VixDiskLib_Close() closes an open virtual disk.

VixDiskLib_Close(srcHandle);

Get Information About a Disk

vixError = VixDiskLib_GetInfo(srcHandle, diskInfo);

VixDiskLib_GetInfo() gets data about an open virtual disk, allocating a filled-in VixDiskLibDiskInfo
structure (page 17). Some of this information overlaps with metadata (see “Metadata Handling” on page 20).
Free Memory from Get Information

This function deallocates memory allocated by VixDiskLib_GetInfo(). Callit to avoid a memory leak.

vixError = VixDiskLib_FreeInfo(diskInfo);

Error Handling

These functions enhance the usefulness of error messages.

Return Error Description Text
VixDiskLib_GetErrorText() returns the textual description of a numeric error code.

char* msg = VixDiskLib_GetErrorText(errCode, NULL);

Free Error Description Text
VixDiskLib_FreeErrorText() deallocates space associated with the error description text.

VixDiskLib_FreeErrorText(msg);

VMware, Inc. 19

Virtual Disk APl Programming Guide

20

Metadata Handling

Read Metadata Key from Disk

vixError = VixDiskLib_ReadMetadata(disk.Handle(), appGlobals.metaKey, &val[0], requiredLen,
NULL);

Retrieves the value of a given key from disk metadata. The metadata for a hosted VMDK is not as extensive as
for managed disk on an ESX/ESXi host. Held in a mapping file, VMFS metadata might also contain
information such as disk label, LUN or partition layout, number of links, file attributes, locks, and so forth.
Metadata also describes encapsulation of raw disk mapping (RDM) storage, if applicable.

Get Metadata Table from Disk

VixDiskLib_GetMetadataKeys () retrieves all existing keys from the metadata of a virtual disk, but not the
key values. Use this in conjunction with VixDiskLib_ReadMetadata(). Below

vixError = VixDiskLib_GetMetadataKeys(disk.Handle(), &buf[0], requiredLen, NULL);
Here is an example of a simple metadata table. Uuid is the universally unique identifier for the virtual disk.

adapterType = buslogic

geometry.sectors = 32

geometry.heads = 64

geometry.cylinders = 100

uuid = 60 00 C2 93 7b a0 3a 03-9f 22 56 c5 29 93 b7 27

Write Metadata Table to Disk

VixDiskLib_WriteMetadata() updates the metadata of a virtual disk with the given key-value pair. If new,
the library adds it to the existing metadata table. If the key already exists, the library updates its value.

vixError = VixDiskLib_WriteMetadata(disk.Handle(), appGlobals.metaKey, appGlobals.metaVal);

Cloning a Virtual Disk

Compute Space Needed for Clone
This function computes the space required (in bytes) to clone a virtual disk, after possible format conversion.

vixError = VixDiskLib_SpaceNeededForClone(child.Handle(), VIXDISKLIB_DISK_VMFS_FLAT, &spaceReq);

Clone a Disk by Copying Data
This function copies data from one virtual disk to another, converting (disk type, size, hardware) as specified.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath, srcConnection,
appGlobals.srcPath, &createParams, CloneProgressFunc, NULL, TRUE);

Disk Chaining and Redo Logs

In VMDK terminology, all the following are synonyms: child disk, redo log, and delta link. From the original
parent disk, each child constitutes a redo log pointing back from the present state of the virtual disk, one step
at a time, to the original. This pseudo equation represents the relative complexity of backups and snapshots:

backup image < child disk = redo log = delta link < snapshot

A backup image (such as on magnetic tape) is less than a child disk because the backup image is merely a data
stream. A snapshot is more than a child disk because it also contains the virtual machine state, with pointers
to associated file system states on VMDK.

VMware, Inc.

Chapter 3 Virtual Disk API Functions

Create Child from Parent Disk

VixDiskLib_CreateChild() creates a child disk (or redo log) for a hosted virtual disk. Generally, you create
the first child from the parent and create successive children from the latest one in the chain. The child VMDK
tracks, in SPARSE type format, any disk sectors changed since inception, as illustrated in Figure 3-1.

vixError = VixDiskLib_CreateChild(parent.Handle(), appGlobals.diskPath,
VIXDISKLIB_DISK_MONOLITHIC_SPARSE, NULL, NULL);

After you create a child, it is an error to open the parent, or earlier children in the disk chain. In VMware
products, the children’s vm. vmdk files point to redo logs, rather than to the parent disk, vm—flat.vmdk in this
example. If you must access the original parent, or earlier children in the chain, use VixDiskLib_Attach().

Figure 3-1. Child Disks Created from Parent

Virtual Machine Writes Here

l

Child3 vm.vmdk vm-001.vmdk

Changed Sectors Only

Child2 vm.vmdk vm-002.vmdk

Child1 vm.vmdk vm-001.vmdk

Parent vm.vmdk vm-flat.vmdk

Physical Disk

Attach Child to Parent Disk

VixDiskLib_Attach() attaches the child disk into its parent disk chain. Afterwards, the parent handle is
invalid and the child handle represents the combined disk chain of redo logs.

vixError = VixDiskLib_Attach(parent.Handle(), child.Handle(Q));

For example, suppose you want to access the older disk image recorded by Child1. Attach the handle of new
Child1a to Child1, which provides Child1a’s parent handle, as shown in Figure 3-2. It is now permissible to
open, read, and write the Child1a virtual disk.

The parent-child disk chain is efficient in terms of storage space, because the child VMDK records only the
sectors that changed since the last VixDiskLib_CreateChild (). The parent-child disk chain also provides a
redo mechanism, permitting programmatic access to any generation with VixDiskLib_Attach().

VMware, Inc. 21

Virtual Disk APl Programming Guide

22

Figure 3-2. Child Disks Created from Parent

Virtual Machine Writes Here

|

Child3 vm.vmdk vm-001.vmdk

Child2 vm.vmdk

- Attach
Childla.vmdk

Child1 vm.vmdk vm-001.vmdk

Parent vm.vmdk

vm-flat.vmdk

Physical Disk

Administrative Disk Operations

These functions rename, grow, defragment, shrink, and remove virtual disk.

Rename an Existing Disk

VixDiskLib_Rename() changes the name of a virtual disk. Use this function only when the virtual machine
is powered off.

vixError = VixDiskLib_Rename(oldGlobals.diskpath, newGlobals.diskpath);

Grow an Existing Local Disk

VixDiskLib_Grow() extends an existing virtual disk by adding sectors. Supports hosted, not managed, disk.
vixError =

VixDiskLib_Grow(appGlobals.connection, appGlobals.diskPath, size, FALSE, GrowProgressFunc, NULL);
Defragment an Existing Disk

VixDiskLib_Defragment () defragments an existing virtual disk. Defragmentation is effective with SPARSE
type files, but might not do anything with FLAT type. In either case, the function returns VIX_OK. Supports
hosted, not managed, disk.

vixError = VixDiskLib_Defragment(disk.Handle(), DefragProgressFunc, NULL);

Defragment consolidates data in the 2GB extents, moving it to lower-numbered extents. This is independent
of defragmentation tools in the guest OS, such as Disk > Properties > Tools > Defragmentation in Windows,
or the defrag command for the Linux Ext2 file system.

VMware recommends defragmentation from the inside out: first within the virtual machine, then using this
function or a VMware defragmentation tool, and finally within the host operating system.

VMware, Inc.

Chapter 3 Virtual Disk API Functions

Shrink an Existing Local Disk

VixDiskLib_Shrink() reclaims unused space in an existing virtual disk, unused space being recognized as
blocks of zeroes. This is more effective (gains more space) with SPARSE type files than with pre-allocated FLAT
type, although FLAT files might shrink by a small amount. In either case, the function returns VIX_OK.

vixError = VixDiskLib_Shrink(disk.Handle(), ShrinkProgressFunc, NULL);

In VMware system utilities, “prepare” zeros out unused blocks in the VMDK so “shrink” can reclaim them. In
the API, use VixDiskLib_Write() to zero out unused blocks, and VixDiskLib_Shrink() to reclaim space.
Shrink does not change the virtual disk capacity, but it makes more space available.

Unlink Extents to Remove Disk

VixDiskLib_Unlink() deletes all extents of the specified virtual disk, which unlinks (removes) the disk data.
This is similar to the remove or erase command in a command tool.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Shut Down

All Virtual Disk API applications should call these functions at end of program.

Disconnect from Server

VixDiskLib_Disconnect() breaks an existing connection.

VixDiskLib_Disconnect(srcConnection);

Clean Up and Exit

VixDiskLib_Exit() cleans up the library before exit.

VixDiskLib_Exit(Q);

Capabilities of Library Calls

This section describes limitations, if any.

Support for Hosted Disk

Everything is supported.

Support for Managed Disk

Some operations are not supported:

VMware, Inc.

For VixDiskLib_Connect () to open a connection to managed disk, you must provide valid credentials
so the ESX/ESXi host can access the virtual disk.

ForVixDiskLib_Create() to create a managed disk on the ESX/ESXi host, first create a hosted type disk,
then use VixDiskLib_Clone() to convert the hosted virtual disk to managed virtual disk.

VixDiskLib_Defragment () can defragment hosted disks only.
VixDiskLib_Grow() can grow hosted disks only.

VixDiskLib_Unlink () can delete hosted disks only.

23

Virtual Disk APl Programming Guide

24 VMware, Inc.

Virtual Disk API Sample Code

This chapter discusses the VDDK sample program, in the following sections:
® “Compiling the Sample Program” on page 25

® “Usage Message” on page 26

B “Walk-Through of Sample Program” on page 26

Compiling the Sample Program

The sample program is written in C++, although the Virtual Disk API also supports C.

Visual C++ on Windows

Before compiling, set your search path to find the required DLL files. Choose My Computer > Properties >
Advanced > Environment Variables, select Path in the System Variables lower list, click Edit, and type the
following at the end, if it is not already there (assuming you installed in the default location):

;C:\Program Files\VMware\VMware Virtual Disk Development Kit\bin
If you insert that path earlier in the Path system variable, the semicolon goes at the end.
To compile the program, find the sample source vixDiskLibSample. cpp at this location:
C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\sample\
Double-click the vcproj file, possibly convert format to a newer version, and choose Build > Build Solution.

To execute the compiled program, choose Debug > Start Without Debugging, or type this in a command
prompt after changing to the doc\sample location given above:

Debug\vixdisklibsample.exe

SLN and VCPROJ Files

The Visual Studio solution file vixDiskLibSample.s1n and project file vixDiskLibSample.vcproj are
included in the sample directory.
C++ on Linux Systems

Find the sample source in this directory:

/usr/share/doc/vmware-vix—disklib/sample

NoTE Edit /etc/1d.so.conf and run ldconfig as root, or change your LD_LIBRARY_PATH environment to
include the library installation path, /usr/1ib/vmware-fix—disklib/1ib32 (or 1ib64).

You might need to copy the source vixDiskLibSample.cpp and its Makefile to a different directory where
you have write permission.

VMware, Inc. 25

Virtual Disk APl Programming Guide

Type the make command to compile. Then run the application:

make
./vix-disklib-sample

Makefile

The Makef1ile fetches any packages that are required for compilation but are not installed.

Library Files Required

The virtual disk library comes with dynamic libraries, or shared objects on Linux, because it is more reliable
to distribute software that way, compared to using static libraries.

Windows requires the 1ib/vixDiskLib.1ib file for linking, and the bin/*.d11 files at runtime.

Linux uses . so files for both linking and running. On Windows and Linux, dynamic linking is the only option.

Usage Message

Running the sample application without arguments produces the following usage message:

Usage: vixdisklibsample command [options] diskPath

commands :

—create : creates a sparse virtual disk with capacity specified by —cap
-redo parentPath : creates a redo log 'diskPath' for base disk 'parentPath'
—-info : displays information for specified virtual disk

—dump : dumps the contents of specified range of sectors in hexadecimal
-fill : fills specified range of sectors with byte value specified by -val
-wmeta key value : writes (key,value) entry into disk's metadata table
-rmeta key : displays the value of the specified metada entry

-meta : dumps all entries of the disk's metadata

—clone sourcePath : clone source vmdk possibly to a remote site

options:

Walk-Through of Sample Program

26

The sample program is the same for Windows as for Linux, with #ifdef blocks for Win32.

Include Files

Windows dynamic link library (DLL) declarations are in process.h, while Linux shared object (. so)
declarations are in d1fcn. h. Windows offers the tchar. h extension for Unicode generic text mappings, not
readily available in Linux.

Definitions and Structures

The sample program uses ten bitwise shift operations (1 << 9) to track its nine available commands and the

multithread option. The Virtual Disk API has 24 function calls, some for initialization and cleanup.

The following library functions are not demonstrated in the sample program:

VixDiskLib_Rename()
VixDiskLib_Defragment ()
VixDiskLib_Grow()
VixDiskLib_Shrink()
VixDiskLib_Unlink()
VixDiskLib_Attach()

The sample program transmits state in the appGlobals structure.

VMware, Inc.

Chapter 4 Virtual Disk APl Sample Code

Dynamic Loading
The #ifdef DYNAMIC_LOADING block is long, starting on line 97 and ending at line 339.

This block contains function definitions for dynamic loading. It also contains the LoadOneFunc () procedure
to obtain any requested function from the dynamic library and the DynLoadDiskLib () procedure to bind it.

This demonstration feature could also be called “runtime loading” to distinguish it from dynamic linking.

To try the program with runtime loading enabled on Linux, add ~-DDYNAMIC_LOADING after g++ in the
Makefile and recompile. On Windows, define DYNAMIC_LOADING in the project.

Wrapper Classes

Below the dynamic loading block are two wrapper classes, one for error codes and descriptive text, and the
other for the connection handle to disk.

The error wrapper appears in catch and throw statements to simplify error handling across functions.

Wrapper class VixDisk is a clean way to open and close connections to disk. The only time that library
functions VixDiskLib_Open() and VixDiskLib_Close() appear elsewhere, aside from dynamic loading, is
in the CopyThread() function near the end of the sample program.

Command Functions
The print-usage message appears next, with output partially shown in “Usage Message” on page 26.

Next comes the main () function, which sets defaults and parses command-line arguments to determine the
operation and possibly set options to change defaults. Dynamic loading occurs, if defined. Notice the all-zero
initialization of the VixDiskLibConnectParams declared structure:

VixDiskLibConnectParams cnxParams = {0};

For connections to an ESX/ESXi host, credentials including user name and password must be correctly
supplied in the —user and —-password command-line arguments. Both the ~host name of the ESX/ESXi host
and its —vm inventory path (vmxSpec) must be supplied. When set, these values populate the cnxParams
structure. Initialize all parameters, especially vmxSpec, or else the connection might behave unexpectedly.

A call to VixDiskLib_Init() initializes the library. In a production application, you can supply appropriate
log, warn, and panic functions as parameters, in place of NULL.

A call toVixDiskLib_Connect () creates a library connection to disk. If host cnxParams . serverName is null,
as it is without —host command-line argument, a connection is made to hosted disk on the local host. If server
name is set, a connection is made to managed disk on the remote server.

Next, an appropriate function is called for the requested operation, followed by error information if applicable.
Finally, the main() function closes the library connection to disk and exits.

Dolnfo()

This procedure calls VixDiskLib_GetInfo() forinformation about the virtual disk, displays results, and calls
VixDiskLib_FreeInfo() to reclaim memory. The parameter disk.Handle() comes from the VixDisk
wrapper class discussed in “Wrapper Classes” on page 27.

In this example, the sample program connects to an ESX/ESXi host named esx3 and displays virtual disk
information for a Red Hat Enterprise Linux client. For an ESX/ESXi host, path to disk is often something like
[storagel] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -info -host esx3 -user admin -password secret "[storagel]RHEL5/RHELS.vmdk"
capacity 8388608 sectors

number of links =1

adapter type = Lsilogic SCSI
BIOS geometry = 0/0/0
physical geometry = 522/255/63

VMware, Inc. 27

Virtual Disk APl Programming Guide

28

If you multiply physical geometry numbers (522 cylinders * 255 heads per cylinder * 63 sectors per head) the
result is a capacity of 8385930 sectors, although the first line says 8388608. A small discrepancy is possible. In
general, you get at least the capacity that you requested. The number of links specifies the separation of a child
from its original parent in the disk chain (redo logs), starting at one. The parent has one link, its child has two
links, the grandchild has three links, and so forth.

DoCreate()

This procedure calls VixDiskLib_Create() to allocate virtual disk. Adapter type is SCSI unless specified as
IDE on the command line. Size is 100MB, unless set by —cap on the command line. Because the sector size is
512 bytes, the code multiplies appGlobals.mbsize by 2048 instead of 1024. Type is always monolithic sparse
and Workstation 5. In a production application, progressFunc and callback data can be defined rather than
NULL. Type these commands to create a sample VMDK file (the first line is for Linux only):

export LD_LIBRARY_PATH=/usr/lib/vmware-vix-disklib/1ib32
vix-disklib-sample -create sample.vmdk

As a VMDK file, monolithic sparse (growable in a single file) virtual disk is initially 65536 bytes (2 * 16) in size,
including overhead. The first time you write to this type of virtual disk, as with DoFil1() below, the VMDK
expands to 131075 bytes (2 * 17), where it remains until more space is needed. You can verify file contents with
the —dump option.

DoRedo()

This procedure calls VixDiskLib_CreateChild() to establish a redo log. A child disk records disk sectors
that changed since the parent disk or previous child. Children can be chained as a set of redo logs.

The sample program does not demonstrate use of VixDiskLib_Attach (), which you can use to access a link
in the disk chain. VixDiskLib_CreateChild() establishes a redo log, with the child replacing the parent for
read/write access. Given a pre-existing disk chain, VixDiskLib_Attach() creates a related child, or a cousin
you might say, that is linked into some generation of the disk chain.

For a diagram of the attach operation, see Figure 3-2, “Child Disks Created from Parent,” on page 22.

Write by DoFill()

This procedure calls VixDiskLib_Write() to fill a disk sector with ones (byte value FF) unless otherwise
specified by —val on the command line. The default is to fill only the first sector, but this can be changed with
options —start and —count on the command line.

DoReadMetadata()

This procedure calls VixDiskLib_ReadMetadata() to serve the —rmeta command-line option. For example,
type this command to obtain the universally unique identifier:

vix-disklib-sample -rmeta uuid sample.vmdk

DoWriteMetadata()

This procedure calls VixDiskLib_WriteMetadata() to serve the -wmeta command-line option. For example,
you can change the tools version from 1 to 2 as follows:

vix-disklib-sample -wmeta toolsVersion 2 sample.vmdk

DoDumpMetadata()

This procedure calls VixDiskLib_GetMetadataKeys () then VixDiskLib_ReadMetadata() to serve the
—-meta command-line option. Two read-metadata calls are needed for each key: one to determine length of the
value string and another to fill in the value. See “Get Metadata Table from Disk” on page 20.

VMware, Inc.

Chapter 4 Virtual Disk APl Sample Code

In the following example, the sample program connects to an ESX/ESXi host named esx3 and displays the
metadata of the Red Hat Enterprise Linux client’s virtual disk. For an ESX/ESXi host, path to disk might be
[storagel] followed by the virtual machine name and the VMDK filename.

vix-diskLib-sample -meta -host esx3 -user admin -password secret "[storagel]RHELS5/RHELS.vmdk"
geometry.sectors = 63

geometry.heads = 255

geometry.cylinders = 522

adapterType = buslogic

toolsVersion = 1

Tools version and virtual hardware version appear in the metadata, but not in the disk information retrieved
by “Dolnfo()” on page 27. Geometry information and adapter type are repeated, but in a different format.
Other metadata items not listed above might exist.

DoDump()

This procedure calls VixDiskLib_Read () to retrieve sectors and displays sector contents on the output in
hexadecimal. The default is to dump only the first sector numbered zero, but you can change this with the
-start and —count options. Here is a sequence of commands to demonstrate:

vix-disklib-sample -create sample.vmdk

vix-disklib-sample -fill -val 1 sample.vmdk
vix-disklib-sample -fill -val 2 -start 1 -count 1 sample.vmdk
vix-disklib-sample —-dump -start 0 -count 2 sample.vmdk

od -c sample.vmdk

On Linux (or Cygwin) you can run the od command to show overhead and metadata at the beginning of file,
and the repeated ones and twos in the first two sectors. The —dump option of the sample program shows only
data, not overhead.

DoTestMultiThread()

This procedure employs the Windows thread library to make multiple copies of a virtual disk file. Specify the
number of copies with the -multithread command-line option. For each copy, the sample program calls the
CopyThread() procedure, which in turn calls a sequence of six Virtual Disk API routines.

On Linux the multithread option is unimplemented.

DoClone()

This procedure calls VixDiskLib_Clone() to make a copy of the data on virtual disk. A callback function,
supplied as the sixth parameter, displays the percent of cloning completed. For local hosted disk, the adapter
type is SCSI unless specified as IDE on the command line, size is 200MB, unless set by —cap option, and type
is monolithic sparse, for Workstation 5. For an ESX/ESXi host, adapter type is taken from managed disk itself,
using the connection parameters established by VixDiskLib_Connect ().

The final parameter TRUE means to overwrite if the destination VMDK exists.

The clone option is an excellent backup method. Often the cloned virtual disk is smaller, because it can be
organized more efficiently. Moreover, a fully allocated flat file can be converted to a sparse representation.

VMware, Inc. 29

Virtual Disk APl Programming Guide

30 VMware, Inc.

Practical Programming Tasks

This chapter presents some practical programming challenges not covered in the sample program, including:
B “Scan VMDK for Virus Signatures” on page 31

B “Creating Virtual Disks” on page 32

® “Working with Virtual Disk Data” on page 33

B “Managing Child Disks” on page 34

B “Interfacing With the VIX API” on page 35

B “Interfacing With VMware vSphere” on page 36

Scan VMDK for Virus Signatures

One of the tasks listed in “Solutions Enabled by the Virtual Disk API” on page 11 is to scan a VMDK for virus
signatures. Using the framework of our sample program, a function can implement the —virus command-line
option. The function in Example 5-1 relies on a pre-existing library routine called SecureVirusScan(), which
typically is supplied by a vendor of antivirus software. As it does for email messages, the library routine scans
a buffer of any size against the vendor’s latest pattern library, and returns TRUE if it identifies a virus.

Example 5-1. Function to Scan VMDK for Viruses

extern int SecureVirusScan(const uint8 *buf, size_t n);

/7’:

* DoVirusScan —

* Scan the content of a virtual disk for virus signatures.

:‘:/
static void
DoVirusScan(void)
{
VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);
VixDiskLibDiskInfo info;
uint8 buf[VIXDISKLIB_SECTOR_SIZE];
VixDiskLibSectorType sector;
VixError vixError = VixDiskLib_GetInfo(disk.Handle(), &info);
CHECK_AND_THROW(vixError) ;
cout << "capacity = " << info.capacity << " sectors" << endl;
// read all sectors even if not yet populated
for (sector = 0; sector < info.capacity; sector++) {
vixError = VixDiskLib_Read(disk.Handle(), sector, 1, buf);
CHECK_AND_THROW(vixError) ;
if (SecureVirusScan(buf, sizeof buf)) {
printf("Virus detected in sector %d\n", sector);
}
}
cout << info.capacity << " sectors scanned" << endl;
}

VMware, Inc. 31

Virtual Disk APl Programming Guide

This function calls VixDiskLib_GetInfo() to determine the number of sectors allocated in the virtual disk.
The number of sectors is available in the VixDiskLibDiskInfo structure, but normally not in the metadata.
With SPARSE type layout, data can occur in any sector, so this function reads all sectors, whether filled or not.
VixDiskLib_Read() continues without error when it encounters an empty sector full of zeroes.

The following difference list shows the remaining code changes necessary for adding the —-virus option to the
vixDiskLibSample.cpp sample program:

43044

> #define COMMAND_VIRUS_SCAN (1 << 10)

72a74

> static void DoVirusScan(void);

4250429

> printf(" -virus: scan source vmdk for virus signature \n");
519a524,525

> } else if (appGlobals.command & COMMAND_VIRUS_SCAN) {
> DoVirusScan();

564a571,572

> } else if (!strcmp(argv[i], "-virus™)) {

> appGlobals.command |= COMMAND_VIRUS_SCAN;

Creating Virtual Disks

32

This section discusses the types of local VMDK files and how to create virtual disk for a remote ESX/ESXi host.

Creating Local Disk

The sample program presented in Chapter 4 creates virtual disk of type MONOLITHIC_SPARSE, in other words
one big file, not pre-allocated. This is the default for VMware Workstation, and is ideal for modern file systems,
all of which support files larger than 2GB, and can hold more than 2GB of total data. This is not true of legacy
file systems, such as FAT16 on MS-DOS until Windows 95, or the ISO9660 file system commonly used to write
files on CD. Both are limited to 2GB per volume, although FAT was extended with FAT32 before NTFS.

However, a SPLIT virtual disk might be safer than the MONOLITHIC variety, because if something goes wrong
with the underlying host file system, some data might be recoverable from uncorrupted 2GB extents. VMware
products do their best to repair a damaged VMDXK, but having a split VMDK increases the chance of salvaging
files during repair. On the downside, SPLIT virtual disk involves higher overhead (more file descriptors) and
increases administrative complexity.

When required for a FAT16 file system, here is how to create SPLIT_SPARSE virtual disk. The change is simple:
the line highlighted in boldface. The sample program could be extended to have an option for this.

static void DoCreate(void)
{
VixDiskLibAdapterType adapter = strcmp(appGlobals.adapterType, "scsi") == 0 ?
VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC : VIXDISKLIB_ADAPTER_IDE;
VixDiskLibCreateParams createParams;
VixError vixError;
createParams.adapterType = adapter;
createParams.capacity = appGlobals.mbSize * 2048;
createParams.diskType = VIXDISKLIB_DISK_SPLIT_SPARSE;
vixError = VixDiskLib_Create(appGlobals.connection, appGlobals.diskPath, &createParams,
NULL, NULL);
CHECK_AND_THROW(vixError);

NOTE You can split VMDK files into smaller than 2GB extents, but created filenames still follow the patterns
shown in Table 3-1, “VMDK Virtual Disk Files,” on page 16.

This one-line change to DoCreate () causes creation of 200MB split VMDK files (200MB being the capacity set
on the previous line) unless the —cap command-line argument specifies otherwise.

VMware, Inc.

Chapter 5 Practical Programming Tasks

Creating Remote Disk

As stated in “Support for Managed Disk” on page 23, VixDiskLib_Create () does not support managed disk.
To create a managed disk on the remote ESX/ESXi host, first create a hosted disk on the local Workstation, then
convert the hosted disk into managed disk with VixDiskLib_Clone() over the network.

To create remote managed disk using the sample program, type the following commands:

./vix-disklib-sample -create -cap 1000000 virtdisk.vmdk
./vix-disklib-sample -clone virtdisk.vmdk -host esx3i -user root -password secret vmfsdisk.vmdk

It might be useful to write a virtual-machine provisioning application using the virtual disk library to perform
the following steps:

1 Create a hosted disk VMDK with 2GB capacity, using VixDiskLib_Create().
2 Write image of the guest OS and application software into the VMDK, using VixDiskLib_Write().
3 Clone the hosted disk VMDK onto the VMFS file system of the ESX/ESXi host.

vixError = VixDiskLib_Clone(appGlobals.connection, appGlobals.diskPath,
srcConnection, appGlobals.srcPath,
&createParams, CloneProgressFunc, NULL, TRUE);

In this call, appGlobals. connection and appGolbals.diskpath represent the remote VMDK on the
ESX/ESXi host, while srcConnection and appGlobals.srcPath represent the local hosted VMDK.

4 Power on the new guest OS to get a new virtual machine.

On Workstation, the VixVMPower0On () function in the VIX API does this. For ESX/ESXi hosts, you must
use the PowerOnVM_Task method. As easy way to use this method is in the VMware vSphere Perl Toolkit,
which has the PowerOnVM_Task () call (non-blocking), and the PowerOnVM() call (synchronous).

5 Provision and deploy the new virtual machine on the ESX/ESXi host.

Special Consideration for ESX/ESXi Hosts

No matter what virtual file type you create in Step 1, it becomes type VIXDISKLIB_DISK_VMFS_FLAT in Step 3.

Working with Virtual Disk Data

The virtual disk library reads and writes sectors of data. It has no interface for character or byte-oriented I/O.

Reading and Writing Local Disk

Demonstrating random I/O, this function reads a sector at a time backwards through a VMDK. If it sees the
string “VmWare” it substitutes the string “VMware” in its place and writes the sector back to VMDK.

#include <string>
static void DoEdit(void)/

{
VixDisk disk(appGlobals.connection, appGlobals.diskPath, appGlobals.openFlags);
uint8 buf[VIXDISKLIB_SECTOR_SIZE];
VixDiskLibSectorType 1i;
string str;
for (i = appGlobals.numSectors; i >= 0; i—) {
VixError vixError;
vixError = VixDiskLib_Read(disk.Handle(), appGlobals.startSector + i, 1, buf);
CHECK_AND_THROW(vixError) ;
str = buf;
if (pos = str.find(“VmWare”, 0)) {
str.replace(pos, 5, “VMware”);
buf = str;
vixError = VixDiskLib_Write(disk.Handle(), appGlobals.startSector + i, 1, buf);
CHECK_AND_THROW(vixError) ;
}
}
}

VMware, Inc. 33

Virtual Disk APl Programming Guide

Reading and Writing Remote Disk

The function is similar to this for remote virtual disk on ESX/ESXi hosts, but calls VixDiskLib_Connect ()
with authentication credentials instead of passing NULL parameters.

if (appGlobals.isRemote) {
cnxParams.vmxSpec = NULL;
cnxParams.serverName = appGlobals.host;
cnxParams.credType = VIXDISKLIB_CRED_UID;
cnxParams.creds.uid.userName = appGlobals.userName;
cnxParams.creds.uid.password = appGlobals.password;
cnxParams.port = appGlobals.port;

}
VixError vixError = VixDiskLib_Init(1, 0, NULL, NULL, NULL, NULL);

CHECK_AND_THROW(vixError);
vixError = VixDiskLib_Connect(&cnxParams, &appGlobals.connection);

Deleting a Disk (Unlink)

The function to delete virtual disk files is VixDiskLib_Unlink (). It takes two arguments: a connection and a
VMDK filename.

vixError = VixDiskLib_Unlink(appGlobals.connection, appGlobals.diskPath);

Effects of Deleting a Virtual Disk

When you delete a VMDK, you lose all the information it contained. In most cases, the host operating system
prevents you from doing this when a virtual machine is running. However, if you delete a VMDK with its
virtual machine powered off, that guest OS becomes unbootable.

Renaming a Disk

The function to rename virtual disk files is VixDiskLib_Rename (). It takes two arguments: the old and the
new VMDK filenames.

vixError = VixDiskLib_Rename(oldGlobals.diskpath, newGlobals.diskpath);

Effects of Renaming a Virtual Disk

The server expects VMDK files of its guest OS virtual machines to be in a predictable location. Any file accesses
that occur during renaming might cause I/O failure and possibly cause a guest OS to fail.

Working with Disk Metadata

With vStorage VMEFES on ESX/ESXi hosts, disk metadata becomes important because it stores information
about the raw disk mapping (RDM) and interactions with the containing file system.

Managing Child Disks

In the Virtual Disk API, redo logs are managed as a parent-child disk chain, each child being the redo log of
disk changes made since its inception. Trying to write on the parent after creating a child results in an error.
The library expects you to write on the child instead. See Figure 3-2, “Child Disks Created from Parent,” on
page 22 for a diagram.

Creating Redo Logs

Ordinarily a redo log is created by a snapshot of the virtual machine, allowing restoration of both disk data
and the virtual machine state.

For example, you could write an application to create new redo logs, independent of snapshots, at 3:00 AM
nightly. This allows you to re-create data for any given day. When you create a redo log while the virtual
machine is running, the VMware host re-arranges file pointers so the primary VMDK, <vmname> . vmdk for
example, keeps track of redo logs in the disk chain.

34 VMware, Inc.

Chapter 5 Practical Programming Tasks

To re-create data for any given day

1 Locate the <vmname>—<NNN>.vmdk redo log for the day in question.
<NNN> is a sequence number. You can identify this redo log by its timestamp.

2 Initialize the virtual disk library and open the redo log to obtain its parent handle.

3 Create a child disk with the VixDiskLib_Create() function, and attach it to the parent:
vixError = VixDiskLib_Attach(parent.Handle(), child.Hand1le());

4 Read and write the virtual disk of the attached child.

Virtual Disk in Snapshots
The Virtual Disk API provides the following features to deal with the disk component of snapshots:
B Attaching an arbitrary child in a disk chain
B Opening read-only virtual disks

B Ability to open snapshot disk on ESX/ESXi hosts through VMware vCenter

Windows 2000 Read-Only File System

Another use of parent-child disk chaining is to create read-only access for Windows 2000, which has no option
for mounting a read-only file system. In Figure 5-1, the gray circle represents a virtual disk that must remain
read-only because it has children. In this example, you want the Windows 2000 virtual machine to use that
virtual disk, rather than the newer ones C1 and C2. Create new child disk C2, attach to the gray virtual disk as
parent, and mount C3 as the virtual disk of the Windows 2000 guest OS.

Figure 5-1. Attaching Virtual Read/Write Disk for Windows 2000

Windows 2000

Interfacing With the VIX API

The VIX APl is a popular, easy-to-use developer interface for VMware Workstation and other hosted products.
See the Support section of the VMware Web site for information about the VIX API:

http://www.vmware.com/support/developer/vix-api

The VIX API Reference Guide includes function reference pages for C++, Perl, and COM, a component object
model for Microsoft C#, VBScript, and Visual Basic. Most of the function reference pages include helpful code
examples. Additionally, the above Web page includes examples for power on and off, suspending a virtual
machine, taking a snapshot, asynchronous use, and a polling event pump.

VMware, Inc. 35

http://www.vmware.com/support/developer/vix-api

Virtual Disk APl Programming Guide

Virus Scan all Hosted Disk

Suppose you want to run the antivirus software presented in “Scan VMDK for Virus Signatures” on page 31
for all virtual machines hosted on a VMware Workstation. Here is the high-level algorithm for an VIX-based
application that would scan hosted disk on all virtual machines:

1 Write an application including both the Virtual Disk API and the VIX APL
Initialize the virtual disk library with VixDiskLib_Init().

Connect VIX to the Workstation host with VixHost_Connect().

= W N

Call VixHost_FindItems () with item-type (second argument) VIX_FIND_RUNNING_VMS.

This provides to a callback routine (fifth argument) the name of each virtual machine, one at a time. To
derive the name of each virtual machine’s disk, append “.vmdk” to the virtual machine name.

5 Write a callback function to open the virtual machine’s VMDK.

Your callback function must be similar to the VixDiscoveryProc() callback function shown as an
example on the VixHost_FindItems () page in the VIX API Reference Guide.

6 Instead of printing “Found virtual machine” in the callback function, call the DoVirusScan() function
shown in “Scan VMDK for Virus Signatures” on page 31.

7 Decontaminate any infected sectors that the virus scanner located.

Interfacing With VMware vSphere

36

The VMware vSphere APl is a developer interface for ESX/ESXi hosts and VMware vCenter. See the Support
section of the VMware Web site for information about the VMware vSphere SDK:

http://www.vmware.com/support/developer/vc-sdk

The Developer’s Setup Guide for the VMware vSphere SDK 2.5 has a chapter describing how to set up your
programming environment for Microsoft C#. Some of the information applies to C++ also.

The Programming Guide for the VMware vSphere SDK 2.5 contains sample applications written in Java, but no
examples in C++. You might find the Java examples helpful.

ESX/ESXi hosts and the VMware vSphere API use a programming model based on Web services, in which
clients generate Web services description language (WSDL) requests that pass over the network as XML
messages encapsulated in simple object access protocol (SOAP). On ESX/ESXi hosts or VMware vCenter, the
vSphere layer answers client requests, possibly passing back SOAP responses. This is a very different
programming model than the object-oriented function-call interface of C++ and the VIX APL

Virus Scan All Managed Disk

Suppose you want to run the antivirus software presented in “Scan VMDK for Virus Signatures” on page 31
for all virtual machines hosted on an ESX/ESXi host. Here is the high-level algorithm for a VMware vSphere
solution that can scan managed disk on all virtual machines:

1 Using the VMware vSphere Perl Toolkit, write a Perl script that connects to a given ESX/ESXi host.

2 CallVim::find_entity_views() to find the inventory of every VirtualMachine.

3 CallVim: :get_inventory_path() to get the virtual disk name in its appropriate resource.
The VMDK filename is available as diskPath in the GuestDiskInfo data object.

4 Using Perl’s system(@cmd) call, run the extended vixDiskLibSample.exe program with —virus option.
For ESX/ESXi hosts you must specify —host, —user, and —password options.

5 Decontaminate any infected sectors that the virus scanner located.

VMware, Inc.

http://www.vmware.com/support/developer/vc-sdk

Flexible Transport for Virtual Disk

After the release of VDDK 1.0, customers and partners requested additional features to support SAN and to
help increase I/O performance. When reading managed disk, VDDK 1.0 required access over the network,
through an ESX/ESXi host. Now it is possible to access virtual disk data directly on a storage device, LAN-free.
To transparently select the most efficient transport method, a new set of APIs is available, including:

® VixDiskLib_ConnectEx() — Establishes a connection using the best transport protocol available for
accessing a given machine’s virtual disk. Replaces VixDiskLib_Connect() in your application.

® VixDiskLib_ListTransportModes() — Lists transport modes that the virtual disk library supports.

These new virtual disk interfaces are discussed in the section “APIs to Select Transport Methods” on page 39.
Protocols available to VixDiskLib_ConnectEx() are presented in “Virtual Disk Transport Methods,” below.

NOTE Library routines for flexible transport are implemented but marked experimental in VDDK 1.1 beta2.

Virtual Disk Transport Methods

VMware supports file-based or image-level backups of virtual machines hosted on an ESX/ESXi host with
SAN or iSCSI storage. VMware virtual machines can read data directly from shared VMFS LUNSs, so backups
are highly efficient and do not put significant load on production ESX/ESXi hosts or the virtual network.

This VDDK release makes it possible to integrate storage-related applications, including backup, using an API
rather than a command-line interface. VMware has developed back-ends that enable efficient access to data
stored on ESX/ESXi server farms. Third party vendors now have access to these data paths (internally called
VixTransport) through the virtual disk library. The motivation behind this flexible transport library was to
provide the most efficient transport method available, to help developers maximize application performance.

Currently VMware supports the transport methods discussed below: file, SAN, HotAdd, and LAN (NBD).

File

The library reads virtual disk data from /vmfs/volumes on ESX/ESXi hosts, or from the local filesystem on
hosted products. This file transport method is built into the virtual disk library, so it is always available.

SAN

In this mode, the virtual disk library obtains information from an ESX/ESXi host about the layout of VMFS
LUNSs, and using this information, reads data directly from the SAN or iSCSI LUN where a virtual disk resides.
This is the fastest transport method for applications deployed on a SAN-connected ESX/ESXi host.

SAN mode requires applications to run on a physical machine (a backup server, for example) with access to
FibreChannel or iSCSI SAN containing the virtual disks to be accessed. This is an efficient data path, as shown
in Figure A-1, because no data needs to be transferred through the production ESX/ESXi host. If the backup
server is also a media server, with optical media or tape drives, backups can be made entirely LAN-free.

VMware, Inc. Beta Dr aft ¥

Virtual Disk APl Programming Guide

Figure A-1. SAN Transport Mode for Virtual Disk

LAN
ESX host backup server
virtual machine
VMware Tools application

Virtual Disk

Fibre Channel SAN/
storage LAN

API

Fibre Channel/iSCSI storage

HotAdd

If the application runs in a virtual machine, it can create a linked-clone virtual machine from the backup
snapshot and read the linked clone’s virtual disks for backup. This involves a SCSI hot-add on the host where
the application is running — disks associated with the linked clone are hot-added on the virtual machine.
VixTransport handles the temporary linked clone and hot attachment of virtual disks. VixDiskLib opens and
reads the hot-added disks as a “whole disk” VMDK (virtual disk on the local host).

Figure A-2. HotAdd Transport Mode for Virtual Disk

LAN

ESX host ESX host

virtual machine backup

VMware Tools

virtual appliance

application

Virtual Disk

API

shared storage

network
)

virtual machine

VMware Tools

|

shared storage local storage

Running the backup server on a virtual machine has two advantages: it is easy to move a virtual machine to a
new media server, and it can also back up local storage without using the LAN, although this incurs more
overhead on the physical ESX/ESXi host than when using SAN transport mode.

38 B eta D r aft VMware, Inc.

Appendix A Flexible Transport for Virtual Disk

SCSI hot-add is a good way to get virtual disk data from guest virtual machines directly to the ESX/ESXi host
on which they are running.

LAN (NBD)

When no other transport mode is available, storage applications can uses LAN transport for data access, either
NBD or NBDSSL. NBD (network block device) is a Linux kernel module that treats storage on a remote host
as a block device. NBDSSL encrypts all data passed over the TCP/IP connection. The LAN transport method
is built into the virtual disk library, so it is always available.

Figure A-3. LAN (NBD) Transport Mode for Virtual Disk

LAN

ESX host backup server

virtual machine

VMware Tools

application

\ 4

local storage

In this mode, the ESX/ESXi host reads data from storage and sends it across a network to the backup server.
For LAN transport, virtual disks cannot be larger than 1TB each. As its name implies, this transport mode is
not LAN-free, unlike SAN and HotAdd transport. However, LAN transport offers the following advantages:

® The ESX/ESXi host can use any storage device, including local storage or NAS.

® The backup server could be a virtual machine, so you can use a resource pool and scheduling capabilities
of VMware vSphere to minimize the performance impact of backup. For example, you can put the backup
server in a different resource pool than the production ESX/ESXi hosts, with lower priority for backup.

®m If the ESX/ESXi host and backup server are on a private network, you can use unencrypted data transfer,
which is faster and consumes fewer resources than NBDSSL. If you need to protect sensitive information,
you have the option of transferring virtual machine data in an encrypted form.

Licensing

Currently the flexible transport license for VDDK includes all transport types. In the future, licensing might
be based on transport type and read/write capability.

APIs to Select Transport Methods

This section summarizes the new APIs for selecting transport method.

List Available Transport Methods

The VixDiskLib_ListTransportModes () function returns the currently supported transport methods as a
colon-separated string value, currently “file:san:hotadd:nbd” where nbd indicates LAN transport. When
available, SSL encrypted NBD transport is shown as nbdss1.

printf(“Transport methods: %s\n”, VixDiskLib_ListTransportModes());

VMware, Inc. Beta Dr aft %

Virtual Disk APl Programming Guide

Connect to VMware vSphere

VixDiskLib_ConnectEx() connects the library to managed disk on a remote ESX/ESXi host or through
VMware vCenter. For hosted disk on the local system, it works the same as VixDiskLib_Connect().
VixDiskLib_ConnectEx() takes three additional parameters:

B Boolean indicating TRUE for read-only access, often faster, or FALSE for read/write access. If connecting
read-only, later calls to VixDiskLib_Open() are always read-only regardless of the openFlags setting.

® Name of the snapshot to back up.
B Preferred transport method, or NULL to accept the defaults.

VixDiskLibConnectParams cnxParams = {0};

if (appGlobals.isRemote) {
cnxParams.vmName = vmName;
cnxParams.serverName = hostName;
cnxParams.credType = VIXDISKLIB_CRED_UID;
cnxParams.creds.uid.userName = userName;
cnxParams.creds.uid.password = password;
cnxParams.port = port;

}
VixError vixError = VixDiskLib_ConnectEx(&cnxParams,
TRUE,
“snapshot-47",
NULL,
&connection);

The snapshot name is required for SAN and HotAdd transport methods, and to access virtual disks of a
powered-on virtual machine.

Get Selected Transport Method

The VixDiskLib_GetTransportMode() function returns the transport method selected for diskHandle.

printf(“Selected transport method: %s\n”, VixDiskLib_GetTransportMode(diskHandle));

Clean Up After Disconnect

If virtual machine state was not cleaned up correctly after connection shut down, VixDiskLib_Cleanup ()
removes extra state for each virtual machine. Its three parameters specify connection, and pass back the
number of virtual machines cleaned up, and the number remaining to be cleaned up.

int numCleanedUp, numRemaining;

VixError vixError = VixDiskLib_Cleanup(&cnxParams,
&numCleanedUp,
&numRemaining) ;

Updating Applications for Flexible Transport

40

To update your applications for flexible transport, follow these steps:
1 Find all instances of VixDiskLib_Connect().
2 Except for instances specific to hosted disk, change all these to VixDiskLib_ConnectEx().
3 Add parameters in the middle:
a TRUE for high performance read-only access, FALSE for read/write access.
b Snapshot name, if applicable.
¢ NULL to accept transport method defaults (recommended).

4 Find VixDiskLib_Disconnect() near the end of program, and for safety add a VixDiskLib_Cleanup O
call immediately afterwards.

5 Compile with the new flexible-transport-enabled version of VixDiskLib.

Beta Dr aft VMware, Inc.

Appendix A Flexible Transport for Virtual Disk

Developing Backup Applications

The flexible transport functions are useful for backing up or restoring data on virtual disks managed by
VMware vSphere. Backup is based on the snapshot mechanism, which provides a data view at a certain point
in time, and allows access to quiescent data on the parent disk while the child disk continues changing.

A typical backup application follows this algorithm:
® Possibly through VMware vCenter, contact the ESX/ESXi host containing the target virtual machine.
® Ask the ESX/ESXi host to produce a snapshot of the target virtual machine.

® Using the vSphere API, capture the virtual machine configuration (VirtualMachineConfigInfo) and
the changed block information (with queryChangedDiskAreas).

® Using flexible transport functions and VixDiskLib, access and save data in the snapshot.

®m Ask the ESX/ESXi host to delete the backup snapshot.

A typical back-in-time disaster recovery or file-based restore follows this algorithm:

®m Possibly through VMware vCenter, contact the ESX/ESXi host containing the target virtual machine.
® Ask the ESX/ESXi host to halt and power off the target virtual machine.

® Using flexible transport functions, restore a snapshot from saved backup data.

®m For disaster recovery to a previous point in time, have the virtual machine revert to the restored snapshot.
For file-based restore, mount the snapshot and restore requested files.

The technical note Designing Backup Applications for VMuware vSphere presents these algorithms in more detail
and includes code samples.

Backup and Recovery Example

The VMware vSphere API method queryChangedDiskArea returns alist of disk sectors that changed between
an existing snapshot, and some previous time identified by a change ID.

The queryChangedDiskAreas method takes four arguments, including a snapshot reference and a change ID.
It returns a list of disk sectors that changed between the time indicated by the change ID and the time of the

snapshot. If you specify change ID as * (star), queryChangedDiskAreas returns a list of allocated disk sectors
so your backup can skip the unallocated sectors of sparse virtual disk.

Suppose that you create an initial backup at time T1. Later at time T2 you take an incremental backup, and
another incremental backup at time T3. (You could use differential backups instead of incremental backups,
which would trade off greater backup time and bandwidth for shorter restore time.)

For the full backup at time T1:
1 Keep arecord of the virtual machine configuration, VirtualMachineConfigInfo.
Create a snapshot of the virtual machine, naming it snapshot_T1.

2

3 Obtain the change ID for each virtual disk in the snapshot, changeld_T1 (per VMDK).

4 Back up the sectors returned by queryChangedDiskAreas(..."*"), avoiding unallocated disk.
5

Delete snapshot_T1, keeping a record of changeld_T1 along with lots of backed-up data.

For the incremental backup at time T2:

1 Create a snapshot of the virtual machine, naming it snapshot_T2.

2 Obtain the change ID for each virtual disk in the snapshot, changeld_T2 (per VMDK).

3 Back up the sectors returned by queryChangedDiskAreas(snapshot_T2,... changeId_T1).
4 Delete snapshot_T2, keeping a record of changeld_T2 along with backed-up data.

VMware, Inc. Beta Dr aft “

Virtual Disk APl Programming Guide

42

For the incremental backup at time T3:

1

4

Create a snapshot of the virtual machine, naming it snapshot_T3.

At time T3 you can no longer obtain a list of changes between T1 and T2.

Obtain the change ID for each virtual disk in the snapshot, changeld_T3 (per VMDK).

Back up the sectors returned by queryChangedDiskAreas (snapshot_T3,... changeId_T2).

A differential backup could be done with queryChangedDiskAreas(snapshot_T3,... changeId_T1).

Delete snapshot_T3, keeping a record of changeld_T3 along with backed-up data.

For a disaster recovery at time T4:

1

Create a new virtual machine with no guest operating system installed, using configuration parameters
you previously saved from VirtualMachineConfigInfo. You do not need to format the virtual disks,
because restored data includes formatting information.

Restore data from the backup at time T3. Keep track of which disk sectors you restore.
Restore data from the incremental backup at time T2, skipping any sectors already recovered.
With differential backup, you can skip copying the T2 backup.

Restore data from the full backup at time T1. The reason for working backwards is to get the newest data
while avoiding unnecessary data copying.

Power on the recovered virtual machine.

Beta Dr aft VMware, Inc.

Virtual Disk Mount API

After the release of VDDK 1.0, customers and partners requested an API to support local and remote mounting

of virtual disks. The vmware-mount command does this, but analogous library routines were not provided.

In upcoming releases, the vixMntapi library will be packaged with the VDDK, and installed in the same
directory as VixDiskLib. However VixMntapi involves a separate library for loading.

CAUTION The new virtual disk mount routines are implemented but marked experimental in VDDK 1.1 beta2.

Interfaces may change in upcoming releases, and backward compatibility is not guaranteed.

In VDDK 1.1 beta2, the vixMntap1i library is available for Windows only, not Linux.

The VixMntapi Library

The VixMntapi library supports guest operating systems on multiple platforms. On POSIX systems it requires

FUSE mount, available on recent Linux systems, and freely available on the SourceForge Web site.

Header File

Definitions are contained in the following header file, installed in the same directory as vixDiskLib.h:

#include "vixMntapi.h"

Types and Structures

This section summarizes the important types and structures.

Operating System Information

The Vix0sInfo structure encapsulates the following information:

® Family of the guest operating system, VixOsFamily, one of the following;:

Windows NT-based
Windows 9x DOS-based
Linux

Netware

Solaris

FreeBSD

0S/2

Mac OS X (Darwin)

B Major version and minor version of the operating system

VMware, Inc.

Beta Draft

43

Virtual Disk APl Programming Guide

B Whether it is 64-bit or 32-bit
B Vendor and edition of the operating system

B Location where the operating system is installed

Disk Volume Information
The VixVolumeInfo structure encapsulates the following information:
® Type of the volume, VixVolumeType, one of the following:
B Basic partition
® GPT - GUID Partition Table, used by Extensible Firmware Interface (EFI) disk.
B Dynamic volume
B LVM - Logical Volume Manager disk storage.
B Whether the volume is mounted on the proxy
® Path to the volume mount point on the proxy, or NULL if the volume is not mounted
® Number of mount points for the volume in the guest, 0 if the volume is not mounted

B Mount points for the volume in the guest

Function Calls

To obtain these functions, load the vixMntapi library separately from the vixDiskLib library. On Windows,
compile with the vixMntapi.lib library so your program can load the vixMntapi.d11 runtime.

The remainder of this section lists the available function calls in the vixMntapi library. Under parameters, [in]
indicates input parameters, and [out] indicates output parameters.

All functions that return vixError return VIX_OK on success, otherwise a suitable VIX error code.

VixMntapi_Init()
Initializes the VixMntapi library.

VixError

VixMntapi_Init(uint32 majorVersion,
uint32 minorVersion,
VixDiskLibGenericLogFunc *1log,
VixDiskLibGenericLogFunc *warn,
VixDiskLibGenericLogFunc *panic,
const char *1ibDir,
const char *tmpDir);

Parameters:

B majorVersion [in] and minorVersion [in] API major and minor version numbers.
B log [in] Callback function to write log messages.

® warn [in] Callback function to write warning messages.

B panic [in] Callback function to report fatal errors.

® 1ibDir [in]

B tmpDir [in]

VixMntapi_EXxit()

Cleans up the VixMntapi library.

void
VixMntapi_Exit(Q);

“ Beta Dr aft VMware, Inc.

Appendix B Virtual Disk Mount API

VixMntapi_OpenDiskSet()

Opens the set of disks for mounting. All the disks for a dynamic volume or logical volume management (LVM)
volume must be opened together.

VixError

VixMntapi_OpenDiskSet (VixDiskLibHandle diskHandles[],
int numberOfDisks,
uint32 openMode,
VixDiskSetHandle *handle);

The VixDiskLibHandle type, defined in vixDiskLib.h, is the same as for the diskHandle parameter in the
VixDiskLib_Open() function, but here it is an array instead of a single value.

Parameters:
m diskHandles [in] Array of handles to open disks.
B number0fDisks [in] Number of disk handles in the array.
B openMode [in] One of the following:
B VIXMNTAPI_FLAG_MOUNT_READ_ONLY
B VIXMNTAPI_FLAG_MOUNT_NON_PERSISTENT
B VIXMNTAPI_FLAG_MOUNT_DEFAULT

® handle [out] Disk set handle to be filled in.

VixMntapi_CloseDiskSet()
Closes the disk set.

VixError
VixMntapi_CloseDiskSet(VixDiskSetHandle diskSet);

Parameter:

m diskSet [in] Handle to an open disk set.

VixMntapi_GetVolumeHandles()
Retrieves handles to the volumes in the disk set.

VixError

VixMntapi_GetVolumeHandles (VixDiskSetHandle diskSet,
int *numberOfVolumes,
VixVolumeHandle *volumeHandles[]);

Parameters:
m diskSet [in] Handle to an open disk set.
® numberOfVolumes [out] Number of volume handles needed.

® volumeHandles [out] Array of volume handles to be filled in.

VixMntapi_FreeVolumeHandles()
Frees memory allocated by VixMntapi_GetVolumeHandles().

void
VixMntapi_FreeVolumeHandles (VixVolumeHandle *volumeHandles);

Parameter:

® volumeHandles [in] Volume handle to be freed.

VMware, Inc. Beta Dr aft *®

Virtual Disk APl Programming Guide

VixMntapi_GetOsInfo()
Retrieves information about the default operating system in the disk set.

VixError
VixMntapi_GetOsInfo(VixDiskSetHandle diskSet,
Vix0sInfo **info);

Parameters:
m diskSet [in] Handle to an open disk set.

B info [out] OS information to be filled in.

VixMntapi_FreeOsInfo()
Frees memory allocated by VixMntapi_GetOsInfo().

void
VixMntapi_FreeOsInfo(VixOsInfo* info);

Parameter:

® info [in] OS info to be freed.

VixMntapi_MountVolume()

Mounts the volume. After mounting the volume, use VixMntapi_GetVolumeInfo() to obtain the path to the
mounted volume.

VixError
VixMntapi_MountVolume (VixVolumeHandle volumeHandle,
Bool isReadOnly);

Parameters:
® volumeHandle [in] Handle to a volume.

B isReadOnly [in] Whether to mount the volume in read-only mode. Does not override openMode.

VixMntapi_DismountVolume()
Unmounts the volume.

VixError
VixMntapi_DismountVolume(VixVolumeHandle volumeHandle,
Bool force);

Parameters:
® volumeHandle [in] Handle to a volume.

m force [in] Force unmount even if files are open on the volume.

VixMntapi_GetVolumelnfo()

Retrieves information about a volume. Some of the volume information is available only if the volume is
mounted, so this must be called after calling VixMntapi_MountVolume().

VixError
VixMntapi_GetVolumeInfo(VixVolumeHandle volumeHandle,
VixVolumeInfo **info);

Parameters:
m volumeHandle [in] Handle to a volume.

m info [out] Volume information to be filled in.

“° Beta Dr aft VMware, Inc.

Appendix B Virtual Disk Mount API

VixMntapi_FreeVolumelnfo()
Frees memory allocated in VixMntapi_GetVolumeInfo().

void
VixMntapi_FreeVolumeInfo(VixVolumeInfo *info);

Parameter:

B info [in] Volume info to be freed.

VMware, Inc. Beta Dr aft “

Virtual Disk APl Programming Guide

8 B eta Dr aft VMware, Inc.

Virtual Disk API Errors

Finding Error Code Documentation
For a list of Virtual Disk API error codes, see the online reference guide Introduction to the VixDiskLib API:

m Windows - C:\Program Files\VMware\VMware Virtual Disk Development Kit\doc\intro.html
B Linux - /usr/share/doc/vmware-vix-disklib/intro.html

In a Web browser, click the Error Codes link in the upper left frame, and click any link in the lower left frame.
The right-hand frame displays an alphabetized list of error codes, with explanations.

Association With VIX API Errors

Most error codes in the Virtual Disk API are shared with the VMware VIX API, which explains the VIX prefix.
For information about the VIX AP], including its online reference guide to functions and error codes, see the
Support section of the VMware Web site.

The following errors were introduced with the Virtual Disk API, or with new versions of the VIX AP], so they
are not found in the online documentation. Some of these involve virtual disk operations, while others involve
connecting to a remote VMware Server.

VIX_E_BUFFER_TOOSMALL
VIX_E_CANNOT_CONNECT_TO_HOST
VIX_E_DISK_CANTSHRINK
VIX_E_DISK_CID_MISMATCH
VIX_E_DISK_INVAL
VIX_E_DISK_INVALIDCHAIN
VIX_E_DISK_INVALIDPARTITIONTABLE
VIX_E_DISK_INVALID_CONNECTION
VIX_E_DISK_KEY_NOTFOUND
VIX_E_DISK_NEEDKEY
VIX_E_DISK_NEEDSREPAIR
VIX_E_DISK_NEEDVMFS
VIX_E_DISK_NOINIT
VIX_E_DISK_NOIO
VIX_E_DISK_NOKEY
VIX_E_DISK_NOKEYOVERRIDE
VIX_E_DISK_NOTENCDESC
VIX_E_DISK_NOTENCRYPTED
VIX_E_DISK_NOTNORMAL
VIX_E_DISK_NOTSUPPORTED
VIX_E_DISK_OPENPARENT
VIX_E_DISK_OUTOFRANGE
VIX_E_DISK_PARTIALCHAIN
VIX_E_DISK_PARTMISMATCH
VIX_E_DISK_RAWTOOBIG
VIX_E_DISK_RAWTOOSMALL
VIX_E_DISK_SUBSYSTEM_INIT_FAIL
VIX_E_DISK_TOOMANYOPENFILES
VIX_E_DISK_TOOMANYREDO

VMware, Inc. 49

Virtual Disk APl Programming Guide

50

VIX_E_DISK_UNSUPPORTEDDISKVERSION
VIX_E_HOST_DISK_INVALID_VALUE
VIX_E_HOST_DISK_SECTORSIZE
VIX_E_HOST_FILE_ERROR_EOF
VIX_E_HOST_NBD_HASHFILE_INIT
VIX_E_HOST_NBD_HASHFILE_VOLUME
VIX_E_HOST_NETBLKDEV_HANDSHAKE
VIX_E_HOST_NETWORK_CONN_REFUSED
VIX_E_HOST_SERVER_NOT_FOUND
VIX_E_HOST_SOCKET_CREATION_ERROR
VIX_E_HOST_TCP_CONN_LOST
VIX_E_HOST_TCP_SOCKET_ERROR
VIX_E_NOT_ALLOWED_DURING_VM_RECORDING
VIX_E_NOT_ALLOWED_DURING_VM_REPLAY
VIX_E_NOT_FOR_REMOTE_HOST

VMware, Inc.

Open Virtual Machine Format

Open Virtualization Format (OVF) is a relatively new industry standard for describing virtual machines in
XML format. Companies that contributed to the standard include Dell, HP, IBM, Microsoft, VMware, and
XenSource. As VMware increases its support for this standard, partners are encouraged to develop solutions
that incorporate OVEF.

The OVF specification describes a secure, portable, efficient, and flexible method to package and distribute
virtual machines and components. It originated from the Distributed Management Task Force (DMTF) after
vendor initiative. See the Virtual Appliances section of the VMware Web site for an introduction:

http://www.vmware.com/appliances/learn/ovf.html

OVF includes a mechanism for describing virtual disks.

OVF Tool

VMware currently provides the OVF Tool, a graphical user interface that allows third parties to create OVF
images. See the Communities section of the VMware Web site for the user’s guide:

http://www.vmware.com/resources/techresources/1013

A similar OVF packaging method is included with recent versions of ESX/ESXi.

OVF Library

At some point, an OVF library will be packaged for use with the VMware Virtual Disk Development Kit and
other VMware development platforms.

VMware, Inc. 51

http://www.vmware.com/appliances/learn/ovf.html
http://www.vmware.com/resources/techresources/1013

Virtual Disk APl Programming Guide

52 VMware, Inc.

Glossary

D differential backup
Saving system data changed since the last full backup, so only two restore steps are necessary.

E extent
In the context of VMDXK, a split portion of virtual disk, usually 2GB.

F flat
Space in a VMDK is fully allocated at creation time (pre-allocated). Contrast with sparse.

H hosted disk
A virtual disk stored on a hosted product, such as VMware Workstation, for its guest operating system.

I incremental backup
Saving system data changed since the last backup of any type.

M managed disk
A virtual disk managed by an ESX/ESXi host or VMware vCenter, contained within a vStorage VMFS
volume.

monolithic
The virtual disk is a single VMDK file, rather than a collection of 2GB extents. Contrast with split.

S sparse
Space in a VMDK is allocated only when needed to store data. Contrast with flat.

split
The virtual disk is a collection of VMDK files containing 2GB extents. Contrast with monolithic.

VMware, Inc. 53

Virtual Disk APl Programming Guide

54 VMware, Inc.

Index

Numerics
32-bit 10
64-bit 10

A

access and credentials 14

B
backup algorithms 41

C

change ID 41

code sample walk-through 26
configuration information 41
CopyThread 27, 29
credentials and access 14

D

datacenter path (dcpath) 18

datastore name (dsname) 18
development platforms 13

differential backup 41

disaster recovery 41

disk manager See virtual disk manager
disk mount (vmware-mount) 10

E

error codes, finding explanations for 49
ESX/ESXi and VMware vCenter 9, 14
extent 11, 15, 22, 32, 53

E
flat VMDK 15, 16, 20, 22, 53

G
gcc (GNU C compiler) 13

H
hosted disk 9, 11, 15, 18, 19, 23, 27, 29, 33, 36, 53

I

incremental backup 41, 53
installation on Linux 14
installation on Windows 14
internationalization (i18n) 17

VMware, Inc.

L
Linux installation 14
localization (110n) 17

M

managed disk 9, 11, 15, 18, 23, 29, 33, 53
monolithic VMDK 15, 16, 21, 28, 29, 32, 53
MONOLITHIC_FLAT 15, 16
MONOLITHIC_SPARSE 15, 16

N

nonpersistent disk mode 16

O

OVF (open virtualization format) 51

P
packaging of Virtual Disk API 13

persistent disk mode 16

platforms supported for development 13
products from VMware that are supported 14

Q

gueryChangedDiskAreas 41

R
redo logs and snapshots 10, 14, 16, 20, 34

S

sample program walk-through 26

SAN and the Virtual Disk API 10, 18
snapshot management 35

snapshots and redo logs 10, 14, 16, 20, 34
sparse VMDK 15, 16, 21, 22, 26, 28, 29, 32, 53
split VMDK 15, 16, 32, 53

SPLIT_FLAT 15, 16

SPLIT_SPARSE 15, 16
STREAM_OPTIMIZED 15

supported platforms for development 13
supported VMware products 14

T

technical support resources 7

U
Unicode UTF-8 support 17

55

Title

\%
VHD from Microsoft 14
Vim::find_entity_views 36
Vim::get_inventory_path 36
virtual disk manager (vmware-vdiskmanager) 10
VirtualMachineConfiginfo 41
Visual Studio 13
VixDiscoveryProc 36
VIXDISKLIB_ADAPTER_IDE 17, 32
VIXDISKLIB_ADAPTER_SCSI_BUSLOGIC 17, 32
VIXDISKLIB_ADAPTER_SCSI_LSILOGIC 17
VixDiskLib_Attach 12, 21, 28, 35
VixDiskLib_Clone 12, 20, 23, 29, 33
VixDiskLib_Close 12, 19, 27
VixDiskLib_Connect 12, 18, 23, 27, 29, 34
VixDiskLib_Create 12, 19, 23, 28, 32, 33, 35
VixDiskLib_CreateChild 12, 21, 28
VIXDISKLIB_CRED_UID 34
VixDiskLib_Defragment 12, 22, 23
VixDiskLib_Disconnect 12, 23
VIXDISKLIB_DISK_SPLIT_SPARSE 32
VixDiskLib_Exit 12, 23
VixDiskLib_FreeErrorText 12, 19
VixDiskLib_Freelnfo 12, 19, 27
VixDiskLib_GetErrorText 12, 19
VixDiskLib_GetInfo 12, 19, 27, 31, 32
VixDiskLib_GetMetadataKeys 12, 20, 28
VixDiskLib_Grow 12, 22, 23
VixDiskLib_Init 12, 18, 27, 34, 36
VixDiskLib_Open 12, 19, 27
VixDiskLib_Read 12, 19, 29, 31, 32, 33
VixDiskLib_ReadMetadata 12, 20, 28
VixDiskLib_Rename 12, 22, 34
VIXDISKLIB_SECTOR_SIZE 19, 31, 33
VixDiskLib_Shrink 12, 23
VixDiskLib_SpaceNeededForClone 12, 20
VixDiskLib_Unlink 12, 23, 34
VixDiskLib_Write 12, 19, 23, 28, 33
VixDiskLib_WriteMetadata 12, 20, 28
VixHost_Connect 36
VixHost_Findltems 36
VMDK (virtual machine disk) file 9, 10, 11, 14, 15, 20, 27,
28, 29, 31, 32, 33, 34, 36
VMFS_FLAT 15, 33
VMFS_SPARSE 15
VMware vCenter and ESX/ESXi 14
VMX specification (vmxSpec) 18

w

walk-through of sample program 26
Windows installation 14
Windows On Windows 64 10

56 VMware, Inc.

	Virtual Disk API Programming Guide
	Contents
	About This Book
	Revision History
	Intended Audience
	Document Feedback
	Technical Support and Education Resources
	Online and Telephone Support
	Support Offerings
	VMware Professional Services

	Introduction to the Virtual Disk API
	Virtual Disk Management
	What is Managed Disk?

	Virtual Disk Development Kit
	Virtual Disk Management Utilities
	Disk Mount Utility
	Virtual Disk Manager Utility

	Virtual Disk API
	VMware vSphere API to Read and Write VMDK
	Virtual Disk Internal Format

	Solutions Enabled by the Virtual Disk API

	Virtual Disk Library Functions

	Installing the Virtual Disk Development Kit
	Packaging and Components
	Supported Platforms
	Programming Environments
	Visual Studio on Windows
	C++ and C on Linux Systems

	Installing the Virtual Disk Development Kit
	Target System Connectivity
	VMware Products
	VMDK Access and Credentials

	Virtual Disk API Functions
	Virtual Disk and Data Structures
	VMDK File Location
	Disk Types
	Persistence Disk Modes
	VMDK File Naming
	Grain Directories and Grain Tables
	Internationalization and Localization

	Adapter Types
	Data Structures in Virtual Disk API

	Library Functions
	Start Up
	Initialize the Library
	Connect to a Workstation or Server
	VMX Specification

	Disk Operations
	Create a New Hosted Disk
	Open a Local or Remote Disk
	Read Sectors From a Disk
	Write Sectors To a Disk
	Close a Local or Remote Disk
	Get Information About a Disk
	Free Memory from Get Information

	Error Handling
	Return Error Description Text
	Free Error Description Text

	Metadata Handling
	Read Metadata Key from Disk
	Get Metadata Table from Disk
	Write Metadata Table to Disk

	Cloning a Virtual Disk
	Compute Space Needed for Clone
	Clone a Disk by Copying Data

	Disk Chaining and Redo Logs
	Create Child from Parent Disk
	Attach Child to Parent Disk

	Administrative Disk Operations
	Rename an Existing Disk
	Grow an Existing Local Disk
	Defragment an Existing Disk
	Shrink an Existing Local Disk
	Unlink Extents to Remove Disk

	Shut Down
	Disconnect from Server
	Clean Up and Exit

	Capabilities of Library Calls
	Support for Hosted Disk
	Support for Managed Disk

	Virtual Disk API Sample Code
	Compiling the Sample Program
	Visual C++ on Windows
	SLN and VCPROJ Files

	C++ on Linux Systems
	Makefile

	Library Files Required

	Usage Message
	Walk-Through of Sample Program
	Include Files
	Definitions and Structures
	Dynamic Loading
	Wrapper Classes
	Command Functions
	DoInfo()
	DoCreate()
	DoRedo()
	Write by DoFill()
	DoReadMetadata()
	DoWriteMetadata()
	DoDumpMetadata()
	DoDump()
	DoTestMultiThread()
	DoClone()

	Practical Programming Tasks
	Scan VMDK for Virus Signatures
	Creating Virtual Disks
	Creating Local Disk
	Creating Remote Disk
	Special Consideration for ESX/ESXi Hosts

	Working with Virtual Disk Data
	Reading and Writing Local Disk
	Reading and Writing Remote Disk
	Deleting a Disk (Unlink)
	Effects of Deleting a Virtual Disk

	Renaming a Disk
	Effects of Renaming a Virtual Disk

	Working with Disk Metadata

	Managing Child Disks
	Creating Redo Logs
	Virtual Disk in Snapshots
	Windows 2000 Read-Only File System

	Interfacing With the VIX API
	Virus Scan all Hosted Disk

	Interfacing With VMware vSphere
	Virus Scan All Managed Disk

	Flexible Transport for Virtual Disk
	Virtual Disk Transport Methods
	File
	SAN
	HotAdd
	LAN (NBD)
	Licensing

	APIs to Select Transport Methods
	List Available Transport Methods
	Connect to VMware vSphere
	Get Selected Transport Method
	Clean Up After Disconnect

	Updating Applications for Flexible Transport
	Developing Backup Applications
	Backup and Recovery Example

	Virtual Disk Mount API
	The VixMntapi Library
	Header File
	Types and Structures
	Operating System Information
	Disk Volume Information

	Function Calls
	VixMntapi_Init()
	VixMntapi_Exit()
	VixMntapi_OpenDiskSet()
	VixMntapi_CloseDiskSet()
	VixMntapi_GetVolumeHandles()
	VixMntapi_FreeVolumeHandles()
	VixMntapi_GetOsInfo()
	VixMntapi_FreeOsInfo()
	VixMntapi_MountVolume()
	VixMntapi_DismountVolume()
	VixMntapi_GetVolumeInfo()
	VixMntapi_FreeVolumeInfo()

	Virtual Disk API Errors
	Finding Error Code Documentation
	Association With VIX API Errors

	Open Virtual Machine Format
	OVF Tool
	OVF Library

	Glossary
	Index

